論文の概要: Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks
- arxiv url: http://arxiv.org/abs/2312.06795v2
- Date: Sat, 10 Aug 2024 00:02:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 00:28:29.020900
- Title: Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks
- Title(参考訳): Model Breadcrumbs: スパースマスクによるマルチタスクモデルマージのスケールアップ
- Authors: MohammadReza Davari, Eugene Belilovsky,
- Abstract要約: 目標問題に対する一般的なアプローチは、特定の目標タスクに対して、訓練済みの基礎モデルを微調整することである。
この研究は、補助的なタスクのスペクトルから導かれた同じ基礎モデルの複数の微調整をマージする問題に焦点を当てる。
事前学習したモデルの重み空間内でモデル適応を誘導する疎定義の重み集合からなる,新しい簡易な方法であるモデルブレッドクラブを導入する。
- 参考スコア(独自算出の注目度): 12.146530928616386
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid development of AI systems has been greatly influenced by the emergence of foundation models. A common approach for targeted problems involves fine-tuning these pre-trained foundation models for specific target tasks, resulting in a rapid spread of models fine-tuned across a diverse array of tasks. This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks. We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined weight set that guides model adaptation within the weight space of a pre-trained model. These breadcrumbs are constructed by subtracting the weights from a pre-trained model before and after fine-tuning, followed by a sparsification process that eliminates weight outliers and negligible perturbations. Our experiments demonstrate the effectiveness of Model Breadcrumbs to simultaneously improve performance across multiple tasks. This contribution aligns with the evolving paradigm of updatable machine learning, reminiscent of the collaborative principles underlying open-source software development, fostering a community-driven effort to reliably update machine learning models. Our method is shown to be more efficient and unlike previous proposals does not require hyperparameter tuning for each new task added. Through extensive experimentation involving various models, tasks, and modalities we establish that integrating Model Breadcrumbs offers a simple, efficient, and highly effective approach for constructing multi-task models and facilitating updates to foundation models.
- Abstract(参考訳): AIシステムの急速な発展は、基礎モデルの出現に大きく影響されている。
ターゲット問題に対する一般的なアプローチは、これらのトレーニング済み基礎モデルを特定のターゲットタスクのために微調整することであり、その結果、様々なタスクに微調整されたモデルの急速な拡散をもたらす。
この研究は、補助的なタスクのスペクトルから導かれた同じ基礎モデルの複数の微調整をマージする問題に焦点を当てる。
事前学習したモデルの重み空間内でモデル適応を誘導する疎定義の重み集合からなる,新しい簡易な方法であるモデルブレッドクラブを導入する。
これらのパンクランプは、微調整前後に事前訓練されたモデルから重量を減らし、その後、減量と無視可能な摂動を除去するスペーサー化プロセスによって構成される。
実験では,複数のタスクをまたいだ性能を同時に向上するモデルブレッドクラブの有効性を実証した。
このコントリビューションは、オープンソースのソフトウェア開発の根底にあるコラボレーティブな原則を思い起こさせ、機械学習モデルを確実に更新するコミュニティ主導の取り組みを促進する、アップダブル機械学習の進化するパラダイムと一致している。
提案手法はより効率的であることが示されており,従来の提案では追加タスク毎にハイパーパラメータチューニングを必要としない。
様々なモデル、タスク、モダリティを含む広範な実験を通じて、モデルブレッドクラブの統合は、マルチタスクモデルの構築と基礎モデルのアップデートの促進にシンプルで、効率的で、非常に効果的なアプローチを提供すると断定する。
関連論文リスト
- The Non-Local Model Merging Problem: Permutation Symmetries and Variance Collapse [25.002218722102505]
モデルマージは、特定のタスクでトレーニングされた複数のエキスパートモデルの重みを、単一のマルチタスクモデルに効率的に結合することを目的としている。
この研究は、"非ローカル"マージのより困難なシナリオを探求する。
標準的なマージ技術は、この非局所的な環境で効果的に一般化できないことが多い。
本稿では,タスク毎のマージモデルの出力アクティベーションを再スケール・シフトするマルチタスク手法を提案する。
論文 参考訳(メタデータ) (2024-10-16T17:41:59Z) - HM3: Hierarchical Multi-Objective Model Merging for Pretrained Models [28.993221775758702]
モデルマージ(英: Model merging)は、複数の大きな事前訓練されたモデルを単一のモデルに組み合わせ、パフォーマンスを向上し、タスク適応性を高める手法である。
本稿では,よりフレキシブルで包括的なモデルマージ技術への大きな進歩を示す。
我々は、重みベクトルのオフラインサンプリングを用いてポリシーと価値ネットワークを訓練し、マージ戦略のオンライン最適化に使用される。
論文 参考訳(メタデータ) (2024-09-27T16:31:31Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Fisher Mask Nodes for Language Model Merging [0.0]
本稿では,トランスフォーマーの新たなモデルマージ手法について紹介し,フィッシャー重み付けにおける過去の研究成果とモデルプルーニングにおけるフィッシャー情報の利用について考察する。
提案手法は,BERTファミリーの各種モデルに対して,正規かつ顕著な性能向上を示し,計算コストのごく一部において,大規模フィッシャー重み付き平均値よりも優れていた。
論文 参考訳(メタデータ) (2024-03-14T21:52:26Z) - Majority Kernels: An Approach to Leverage Big Model Dynamics for Efficient Small Model Training [32.154166415680066]
蒸留、圧縮、量子化といった手法は、高性能な大きなモデルを利用してより小さな性能のモデルを誘導するのに役立つ。
本稿では、単一トレーニングランが同時に、より大きなパフォーマンスモデルをトレーニングし、より小さなデプロイメントモデルを導出できるという仮説を考察する。
論文 参考訳(メタデータ) (2024-02-07T17:07:41Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Model Ratatouille: Recycling Diverse Models for Out-of-Distribution
Generalization [99.6826401545377]
ファウンデーションモデルは、AIシステムの構築方法を再定義している。実践者は、機械学習ソリューションを構築するための標準手順に従う。
我々は,多種多様な補助的タスクにおいて,同じ基礎モデルの複数の微調整をリサイクルする新しい戦略であるモデルラタトゥーイユを提案する。
論文 参考訳(メタデータ) (2022-12-20T17:21:46Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。