論文の概要: Densify Your Labels: Unsupervised Clustering with Bipartite Matching for
Weakly Supervised Point Cloud Segmentation
- arxiv url: http://arxiv.org/abs/2312.06799v1
- Date: Mon, 11 Dec 2023 19:18:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 18:25:02.133541
- Title: Densify Your Labels: Unsupervised Clustering with Bipartite Matching for
Weakly Supervised Point Cloud Segmentation
- Title(参考訳): densify your labels: 弱教師付きポイントクラウドセグメンテーションのための2部マッチングによる教師なしクラスタリング
- Authors: Shaobo Xia, Jun Yue, Kacper Kania, Leyuan Fang, Andrea Tagliasacchi,
Kwang Moo Yi, Weiwei Sun
- Abstract要約: 本稿では,単に「全シーン」アノテーションから「ポイント毎」ラベルを予測する,ポイントクラウドに対する弱教師付きセマンティックセマンティックセマンティックセマンティクス手法を提案する。
私たちの中核となる考え方は、擬似ラベルを保守的な方法で作成することで、シーンレベルのラベルをポイントクラウドの各ポイントに伝播させることです。
我々は,ScanNet と S3DIS のデータセット上での手法の評価を行い,その有効性を実証し,完全な教師付き手法に匹敵する結果が得られることを示した。
- 参考スコア(独自算出の注目度): 42.144991202299934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a weakly supervised semantic segmentation method for point clouds
that predicts "per-point" labels from just "whole-scene" annotations while
achieving the performance of recent fully supervised approaches. Our core idea
is to propagate the scene-level labels to each point in the point cloud by
creating pseudo labels in a conservative way. Specifically, we over-segment
point cloud features via unsupervised clustering and associate scene-level
labels with clusters through bipartite matching, thus propagating scene labels
only to the most relevant clusters, leaving the rest to be guided solely via
unsupervised clustering. We empirically demonstrate that over-segmentation and
bipartite assignment plays a crucial role. We evaluate our method on ScanNet
and S3DIS datasets, outperforming state of the art, and demonstrate that we can
achieve results comparable to fully supervised methods.
- Abstract(参考訳): 我々は,近年の完全教師付きアプローチの性能を達成しつつ,単に「全シーン」アノテーションから「ポイント毎」ラベルを予測する,ポイントクラウドに対する弱教師付きセマンティックセマンティックセマンティックセマンティクス手法を提案する。
私たちの中核となる考え方は、擬似ラベルを保守的な方法で作成することで、シーンレベルのラベルをポイントクラウドの各ポイントに伝播させることです。
具体的には、教師なしクラスタリングによるオーバーセグメントポイントクラウド機能と、バイパーティイトマッチングによるシーンレベルのラベルをクラスタに関連付けることで、シーンラベルを最も関連性の高いクラスタにのみ伝搬し、残りの部分は教師なしクラスタリングのみでガイドする。
オーバーセグメンテーションと二部配置が重要な役割を果たすことを実証的に実証する。
本手法はscannetとs3disのデータセット上で評価し,その性能を上回っており,全教師付き手法に匹敵する結果が得られることを示す。
関連論文リスト
- A Data-efficient Framework for Robotics Large-scale LiDAR Scene Parsing [10.497309421830671]
既存の最先端の3Dポイントクラウド理解手法は、完全に教師された方法でのみうまく機能する。
この研究は、ラベルが制限されているときのポイントクラウドを理解するための、汎用的でシンプルなフレームワークを提示している。
論文 参考訳(メタデータ) (2023-12-03T02:38:51Z) - A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation [28.907274978550493]
教師なしセマンティックセグメンテーションは、注釈付きデータを用いることなく、画像の各ピクセルを対応するクラスに分類することを目的としている。
教師なしセマンティックセグメンテーションのための軽量クラスタリングフレームワークを提案する。
本フレームワークは,PASCAL VOCおよびMS COCOデータセットの最先端結果を実現する。
論文 参考訳(メタデータ) (2023-11-30T15:33:42Z) - Timestamp-Supervised Action Segmentation from the Perspective of
Clustering [12.661218632080207]
既存のほとんどの手法は、各ビデオ内のすべてのフレームに対して擬似ラベルを生成し、セグメンテーションモデルを訓練する。
本稿では,クラスタリングの観点から,以下の2つの部分を含む新しいフレームワークを提案する。
反復クラスタリングは、クラスタリングによって擬似ラベルをあいまいな間隔に反復的に伝播し、擬似ラベルシーケンスを更新してモデルをトレーニングする。
論文 参考訳(メタデータ) (2022-12-22T13:35:00Z) - Pointly-Supervised Panoptic Segmentation [106.68888377104886]
弱教師付き単眼セグメンテーションにポイントレベルのアノテーションを適用するための新しい手法を提案する。
完全に教師された方法で使用される高密度のピクセルレベルラベルの代わりに、ポイントレベルラベルは、監督対象ごとに単一のポイントしか提供しない。
我々は、ポイントレベルのラベルから同時に汎視的擬似マスクを生成し、それらから学習することで、エンドツーエンドのフレームワークにおける問題を定式化する。
論文 参考訳(メタデータ) (2022-10-25T12:03:51Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
本稿では,1つのオブジェクトを1つのポイントでラベル付けするだけでよい,弱教師付き手法RWSegを提案する。
これらの疎いラベルにより、セマンティック情報とインスタンス情報を伝達する2つの分岐を持つ統一的なフレームワークを導入する。
具体的には、異なるインスタンスグラフ間の競合を促進するクロスグラフ競合ランダムウォークス(CRW)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-10T02:14:39Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds [59.63231842439687]
意味点クラウドセグメンテーションネットワークをトレーニングする。
同様の特徴を伝達し、2つのサンプルにまたがる勾配を再現するクロスサンプル機能再配置モジュールを提案する。
ラベルの10%と1%しか持たない弱教師付き手法では、完全教師付き手法と互換性のある結果が得られる。
論文 参考訳(メタデータ) (2021-07-23T14:34:57Z) - SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network [21.818744369503197]
SSPC-Net と呼ばれる半監視型セマンティックポイントクラウドセグメンテーションネットワークを提案する。
注釈付き3D点からラベルのない点のラベルを推定することにより意味分節ネットワークを訓練する。
本手法は,注釈付き3D点の少ない半教師付きセグメンテーション法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2021-04-16T02:37:27Z) - SegGroup: Seg-Level Supervision for 3D Instance and Semantic
Segmentation [88.22349093672975]
アノテーションの場所を示すためにインスタンス毎に1つのポイントをクリックするだけでよい、弱い教師付きポイントクラウドセグメンテーションアルゴリズムを設計します。
事前処理のオーバーセグメンテーションにより、これらの位置アノテーションをセグレベルのラベルとしてセグメントに拡張する。
seg-level supervised method (SegGroup) は、完全注釈付きポイントレベルのsupervised method で比較結果が得られることを示した。
論文 参考訳(メタデータ) (2020-12-18T13:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。