論文の概要: Resetting a fixed broken ELBO
- arxiv url: http://arxiv.org/abs/2312.06828v1
- Date: Mon, 11 Dec 2023 20:40:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 18:09:42.293837
- Title: Resetting a fixed broken ELBO
- Title(参考訳): 壊れたエルボをリセットする
- Authors: Robert I. Cukier
- Abstract要約: 変分オートエンコーダ(VAEs)は、生成確率潜在変数モデルの1つのクラスである。
変分近似はエビデンスローバウンド(ELBO)を生成する
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational autoencoders (VAEs) are one class of generative probabilistic
latent-variable models designed for inference based on known data. They balance
reconstruction and regularizer terms. A variational approximation produces an
evidence lower bound (ELBO). Multiplying the regularizer term by beta provides
a beta-VAE/ELBO, improving disentanglement of the latent space. However, any
beta value different than unity violates the laws of conditional probability.
To provide a similarly-parameterized VAE, we develop a Renyi (versus Shannon)
entropy VAE, and a variational approximation RELBO that introduces a similar
parameter. The Renyi VAE has an additional Renyi regularizer-like term with a
conditional distribution that is not learned. The term is evaluated essentially
analytically using a Singular Value Decomposition method.
- Abstract(参考訳): 変分オートエンコーダ(VAEs)は、既知のデータに基づく推論のために設計された生成確率潜在変数モデルの一種である。
彼らは再建と正規化の条件のバランスをとる。
変分近似はエビデンス下限(elbo)を生成する。
ベータで正規化子項を乗算すると、β-VAE/ELBOが提供され、潜在空間のゆがみが改善される。
しかし、ユニティとは異なるベータ値は条件付き確率の法則に違反する。
同様にパラメータ化されたVAEを提供するために、同様のパラメータを導入したRenyiエントロピーVAEと変分近似RELBOを開発した。
Renyi VAEは、学習されていない条件分布を持つRenyi regularizerのような追加の項を持つ。
この用語は特異値分解法を用いて本質的に解析的に評価される。
関連論文リスト
- Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - How to train your VAE [0.0]
変分オートエンコーダ(VAE)は、機械学習における生成モデリングと表現学習の基盤となっている。
本稿では,ELBO(エビデンス・ロウアー・バウンド)における重要な構成要素であるKLディバージェンス(Kulback-Leibler)の解釈について検討する。
提案手法は, ELBOを後続確率のガウス混合体で再定義し, 正規化項を導入し, テクスチャリアリズムを高めるためにPatchGAN識別器を用いる。
論文 参考訳(メタデータ) (2023-09-22T19:52:28Z) - Posterior Collapse and Latent Variable Non-identifiability [54.842098835445]
柔軟性を犠牲にすることなく識別性を強制する深層生成モデルである,潜時同定可能な変分オートエンコーダのクラスを提案する。
合成および実データ全体にわたって、潜在識別可能な変分オートエンコーダは、後方崩壊を緩和し、データの有意義な表現を提供する既存の方法より優れている。
論文 参考訳(メタデータ) (2023-01-02T06:16:56Z) - Embrace the Gap: VAEs Perform Independent Mechanism Analysis [36.686468842036305]
ほぼ決定論的デコーダの極限における非線形VAEについて検討する。
我々は、データ生成プロセスがIMAの仮定を満たすとき、VAEが真の潜伏要因を明らかにすることを示す。
論文 参考訳(メタデータ) (2022-06-06T08:19:19Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Generalizing Variational Autoencoders with Hierarchical Empirical Bayes [6.273154057349038]
確率的生成モデルのための計算的に安定なフレームワークである階層的経験的ベイズオートエンコーダ(HEBAE)を提案する。
鍵となる貢献は2つであり、まず、符号化分布を階層的に優先することで、再構成損失関数の最小化と過正規化の回避とのトレードオフを適応的にバランスさせることで、利益を得る。
論文 参考訳(メタデータ) (2020-07-20T18:18:39Z) - Preventing Posterior Collapse with Levenshtein Variational Autoencoder [61.30283661804425]
我々は,エビデンス・ロー・バウンド(ELBO)を最適化し,後部崩壊を防止できる新しい目的に置き換えることを提案する。
本稿では,Levenstein VAEが後方崩壊防止のための代替手法よりも,より情報的な潜伏表現を生成することを示す。
論文 参考訳(メタデータ) (2020-04-30T13:27:26Z) - A Batch Normalized Inference Network Keeps the KL Vanishing Away [35.40781000297285]
変分オートエンコーダ(VAE)はモデルの後続変数を近似するために広く用いられている。
VAEはしばしば「後崩壊」と呼ばれる退化した局所最適値に収束する
論文 参考訳(メタデータ) (2020-04-27T05:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。