Disentangling Perceptions of Offensiveness: Cultural and Moral
Correlates
- URL: http://arxiv.org/abs/2312.06861v1
- Date: Mon, 11 Dec 2023 22:12:20 GMT
- Title: Disentangling Perceptions of Offensiveness: Cultural and Moral
Correlates
- Authors: Aida Davani, Mark D\'iaz, Dylan Baker, Vinodkumar Prabhakaran
- Abstract summary: We argue that cultural and psychological factors play a vital role in the cognitive processing of offensiveness.
We demonstrate substantial cross-cultural differences in perceptions of offensiveness.
Individual moral values play a crucial role in shaping these variations.
- Score: 4.857640117519813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perception of offensiveness is inherently subjective, shaped by the lived
experiences and socio-cultural values of the perceivers. Recent years have seen
substantial efforts to build AI-based tools that can detect offensive language
at scale, as a means to moderate social media platforms, and to ensure safety
of conversational AI technologies such as ChatGPT and Bard. However, existing
approaches treat this task as a technical endeavor, built on top of data
annotated for offensiveness by a global crowd workforce without any attention
to the crowd workers' provenance or the values their perceptions reflect. We
argue that cultural and psychological factors play a vital role in the
cognitive processing of offensiveness, which is critical to consider in this
context. We re-frame the task of determining offensiveness as essentially a
matter of moral judgment -- deciding the boundaries of ethically wrong vs.
right language within an implied set of socio-cultural norms. Through a
large-scale cross-cultural study based on 4309 participants from 21 countries
across 8 cultural regions, we demonstrate substantial cross-cultural
differences in perceptions of offensiveness. More importantly, we find that
individual moral values play a crucial role in shaping these variations: moral
concerns about Care and Purity are significant mediating factors driving
cross-cultural differences. These insights are of crucial importance as we
build AI models for the pluralistic world, where the values they espouse should
aim to respect and account for moral values in diverse geo-cultural contexts.
Related papers
- Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMs are increasingly deployed in global applications, ensuring users from diverse backgrounds feel respected and understood.
Cultural harm can arise when these models fail to align with specific cultural norms, resulting in misrepresentations or violations of cultural values.
We present two key contributions: A cultural harm test dataset, created to assess model outputs across different cultural contexts through scenarios that expose potential cultural insensitivities, and a culturally aligned preference dataset, aimed at restoring cultural sensitivity through fine-tuning based on feedback from diverse annotators.
arXiv Detail & Related papers (2024-10-15T18:13:10Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
"CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset is designed to evaluate the social and cultural variation of Large Language Models (LLMs)
We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy.
arXiv Detail & Related papers (2024-05-22T20:19:10Z) - What You Use is What You Get: Unforced Errors in Studying Cultural Aspects in Agile Software Development [2.9418191027447906]
Investigating the influence of cultural characteristics is challenging due to the multi-faceted concept of culture.
Cultural and social aspects are of high importance for their successful use in practice.
arXiv Detail & Related papers (2024-04-25T20:08:37Z) - D3CODE: Disentangling Disagreements in Data across Cultures on Offensiveness Detection and Evaluation [5.9053106775634685]
We introduce the dataset: a large-scale cross-cultural dataset of parallel annotations for offensive language in over 4.5K sentences annotated by a pool of over 4k annotators.
The dataset contains annotators' moral values captured along six moral foundations: care, equality, proportionality, authority, loyalty, and purity.
Our analyses reveal substantial regional variations in annotators' perceptions that are shaped by individual moral values.
arXiv Detail & Related papers (2024-04-16T19:12:03Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
This paper introduces a novel approach for massively multicultural knowledge acquisition.
Our method strategically navigates from densely informative Wikipedia documents on cultural topics to an extensive network of linked pages.
Our work marks an important step towards deeper understanding and bridging the gaps of cultural disparities in AI.
arXiv Detail & Related papers (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z) - Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties [68.66719970507273]
Value pluralism is the view that multiple correct values may be held in tension with one another.
As statistical learners, AI systems fit to averages by default, washing out potentially irreducible value conflicts.
We introduce ValuePrism, a large-scale dataset of 218k values, rights, and duties connected to 31k human-written situations.
arXiv Detail & Related papers (2023-09-02T01:24:59Z) - Assessing Cross-Cultural Alignment between ChatGPT and Human Societies:
An Empirical Study [9.919972416590124]
ChatGPT has garnered widespread recognition for its exceptional ability to generate human-like responses in dialogue.
We investigate the underlying cultural background of ChatGPT by analyzing its responses to questions designed to quantify human cultural differences.
arXiv Detail & Related papers (2023-03-30T15:43:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.