論文の概要: Rethinking Model Inversion Attacks With Patch-Wise Reconstruction
- arxiv url: http://arxiv.org/abs/2312.07040v2
- Date: Mon, 04 Nov 2024 11:08:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:41:27.019690
- Title: Rethinking Model Inversion Attacks With Patch-Wise Reconstruction
- Title(参考訳): Patch-Wise 再構成によるモデル逆転攻撃の再考
- Authors: Jonggyu Jang, Hyeonsu Lyu, Hyun Jong Yang,
- Abstract要約: モデルインバージョン(MI)攻撃は、ターゲットモデルの重みからリバースエンジニアリングによってトレーニングデータセットを推測または再構成することを目的としている。
我々は,MI攻撃の確率論的解釈を提供するジグソーパズルにインスパイアされたPatch-MI法を提案する。
Patch-MIは従来の手法に比べてTop 1攻撃精度を5%向上することを示す。
- 参考スコア(独自算出の注目度): 7.264378254137811
- License:
- Abstract: Model inversion (MI) attacks aim to infer or reconstruct the training dataset through reverse-engineering from the target model's weights. Recently, significant advancements in generative models have enabled MI attacks to overcome challenges in producing photo-realistic replicas of the training dataset, a technique known as generative MI. The generative MI primarily focuses on identifying latent vectors that correspond to specific target labels, leveraging a generative model trained with an auxiliary dataset. However, an important aspect is often overlooked: the MI attacks fail if the pre-trained generative model lacks the coverage to create an image corresponding to the target label, especially when there is a significant difference between the target and auxiliary datasets. To address this gap, we propose the Patch-MI method, inspired by a jigsaw puzzle, which offers a novel probabilistic interpretation of MI attacks. Even with a dissimilar auxiliary dataset, our method effectively creates images that closely mimic the distribution of image patches in the target dataset by patch-based reconstruction. Moreover, we numerically demonstrate that the Patch-MI improves Top 1 attack accuracy by 5\%p compared to existing methods.
- Abstract(参考訳): モデルインバージョン(MI)攻撃は、ターゲットモデルの重みからリバースエンジニアリングによってトレーニングデータセットを推測または再構成することを目的としている。
近年、生成モデルの大幅な進歩により、MI攻撃は、生成的MIとして知られる訓練データセットのフォトリアリスティックレプリカを作成する際の課題を克服することができる。
生成MIは主に、特定のターゲットラベルに対応する潜在ベクトルを識別することに焦点を当て、補助的なデータセットで訓練された生成モデルを活用する。
しかし、MI攻撃は、事前訓練された生成モデルがターゲットラベルに対応するイメージを生成するカバレッジを欠いている場合、特にターゲットデータセットと補助データセットの間に大きな違いがある場合、失敗する。
このギャップに対処するため、我々はジグソーパズルにヒントを得たPatch-MI法を提案し、MI攻撃の確率論的解釈を提供する。
異種補助データセットであっても、パッチベースの再構成により、ターゲットデータセット内の画像パッチの分布を忠実に模倣する画像を効果的に生成する。
さらに,Patch-MIは従来の手法に比べてTop 1攻撃精度を55%向上することを示した。
関連論文リスト
- Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデルアタック(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - Prediction Exposes Your Face: Black-box Model Inversion via Prediction Alignment [24.049615035939237]
モデル反転(MI)攻撃は、その出力から対象モデルのプライベートトレーニングデータを再構成する。
ブラックボックスMI攻撃のための予測画像P2I手法を提案する。
本手法は,攻撃精度を8.5%向上し,データセットCelebAのクエリ数を99%削減する。
論文 参考訳(メタデータ) (2024-07-11T01:58:35Z) - Practical Membership Inference Attacks Against Large-Scale Multi-Modal
Models: A Pilot Study [17.421886085918608]
メンバーシップ推論攻撃(MIA)は、機械学習モデルのトレーニングにデータポイントを使用したかどうかを推測することを目的としている。
これらの攻撃は、潜在的なプライバシー上の脆弱性を特定し、個人データの不正使用を検出するために使用できる。
本稿では,大規模マルチモーダルモデルに対する実用的なMIAの開発に向けて第一歩を踏み出す。
論文 参考訳(メタデータ) (2023-09-29T19:38:40Z) - Unstoppable Attack: Label-Only Model Inversion via Conditional Diffusion
Model [14.834360664780709]
モデルアタック(MIA)は、深層学習モデルの到達不可能なトレーニングセットからプライベートデータを復元することを目的としている。
そこで本研究では,条件拡散モデル(CDM)を応用したMIA手法を開発し,対象ラベル下でのサンプルの回収を行う。
実験結果から,本手法は従来手法よりも高い精度で類似したサンプルをターゲットラベルに生成できることが示唆された。
論文 参考訳(メタデータ) (2023-07-17T12:14:24Z) - PixMIM: Rethinking Pixel Reconstruction in Masked Image Modeling [83.67628239775878]
Masked Image Modeling (MIM) は Masked Autoencoders (MAE) と BEiT の出現によって有望な進歩を遂げた。
本稿では,画素再構成の観点からMIMの基本解析を行う。
我々は,2つの戦略を包含する極めて単純で効果的な方法,weelmethodを提案する。
論文 参考訳(メタデータ) (2023-03-04T13:38:51Z) - Pseudo Label-Guided Model Inversion Attack via Conditional Generative
Adversarial Network [102.21368201494909]
モデル反転(MI)攻撃はプライバシーに対する懸念を高めている。
近年のMI攻撃では,探索空間を狭める前にGAN(Generative Adversarial Network)を画像として活用している。
我々は条件付きGAN(cGAN)による擬似ラベル誘導MI(PLG-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2023-02-20T07:29:34Z) - Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks [13.374754708543449]
モデルアタック(MIA)は、モデルが学習した知識を活用して、対象のインバージョントレーニングデータからクラスワイズ特性を反映した合成画像を作成することを目的としている。
従来の研究では、特定のターゲットモデルに合わせた画像の先行画像として、GAN(Generative Adversarial Network)を用いたジェネレーティブMIAを開発した。
ターゲットモデルと画像間の依存性を緩和し、訓練された単一のGANを使用することで、幅広いターゲットを攻撃できるプラグイン&プレイアタック(Plug & Play Attacks)を提案する。
論文 参考訳(メタデータ) (2022-01-28T15:25:50Z) - Reconstructing Training Data from Diverse ML Models by Ensemble
Inversion [8.414622657659168]
モデルインバージョン(MI)は、学習された機械学習(ML)モデルへのアクセスを敵が悪用するものであり、研究の注目を集めている。
本研究では,訓練されたモデルのアンサンブルに制約されたジェネレータを訓練することにより,元のトレーニングデータの分布を推定するアンサンブル変換手法を提案する。
データセットを使わずに高品質な結果が得られ、想定されるトレーニングデータに類似した補助データセットを利用することで、結果がどう改善されるかを示す。
論文 参考訳(メタデータ) (2021-11-05T18:59:01Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
本稿では,知識盗むプロセスで使用されるデータの分散設計に焦点をあてた,新しい視点代替トレーニングを提案する。
これら2つのモジュールの組み合わせにより、代替モデルとターゲットモデルの一貫性がさらに向上し、敵攻撃の有効性が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-26T07:26:29Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
拡張データの情報を活用するために,新たなMI攻撃を提案する。
モデルが拡張データで訓練された場合、最適な会員推定値を確立する。
論文 参考訳(メタデータ) (2020-07-21T02:21:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。