Mask as Supervision: Leveraging Unified Mask Information for Unsupervised 3D Pose Estimation
- URL: http://arxiv.org/abs/2312.07051v2
- Date: Mon, 8 Jul 2024 11:03:42 GMT
- Title: Mask as Supervision: Leveraging Unified Mask Information for Unsupervised 3D Pose Estimation
- Authors: Yuchen Yang, Yu Qiao, Xiao Sun,
- Abstract summary: We propose a unified framework that leverages mask as supervision for unsupervised 3D pose estimation.
We organize the human skeleton in a fully unsupervised way which enables the processing of annotation-free data.
Experiments demonstrate our state-of-the-art pose estimation performance on Human3.6M and MPI-INF-3DHP datasets.
- Score: 26.630702699374194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic estimation of 3D human pose from monocular RGB images is a challenging and unsolved problem in computer vision. In a supervised manner, approaches heavily rely on laborious annotations and present hampered generalization ability due to the limited diversity of 3D pose datasets. To address these challenges, we propose a unified framework that leverages mask as supervision for unsupervised 3D pose estimation. With general unsupervised segmentation algorithms, the proposed model employs skeleton and physique representations that exploit accurate pose information from coarse to fine. Compared with previous unsupervised approaches, we organize the human skeleton in a fully unsupervised way which enables the processing of annotation-free data and provides ready-to-use estimation results. Comprehensive experiments demonstrate our state-of-the-art pose estimation performance on Human3.6M and MPI-INF-3DHP datasets. Further experiments on in-the-wild datasets also illustrate the capability to access more data to boost our model. Code will be available at https://github.com/Charrrrrlie/Mask-as-Supervision.
Related papers
- X as Supervision: Contending with Depth Ambiguity in Unsupervised Monocular 3D Pose Estimation [12.765995624408557]
We propose an unsupervised framework featuring a multi-hypothesis detector and multiple tailored pretext tasks.
The detector extracts multiple hypotheses from a heatmap within a local window, effectively managing the multi-solution problem.
The pretext tasks harness 3D human priors from the SMPL model to regularize the solution space of pose estimation, aligning it with the empirical distribution of 3D human structures.
arXiv Detail & Related papers (2024-11-20T04:18:11Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
Supervised approaches to 3D pose estimation from single images are remarkably effective when labeled data is abundant.
Much of the recent attention has shifted towards semi and (or) weakly supervised learning.
We propose to impose multi-view geometrical constraints by means of a differentiable triangulation and to use it as form of self-supervision during training when no labels are available.
arXiv Detail & Related papers (2022-03-29T19:11:54Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Unsupervised View-Invariant Human Posture Representation [28.840986167408037]
We present a novel unsupervised approach that learns to extract view-invariant 3D human pose representation from a 2D image.
Our model is trained by exploiting the intrinsic view-invariant properties of human pose between simultaneous frames.
We show improvements on the state-of-the-art unsupervised cross-view action classification accuracy on RGB and depth images.
arXiv Detail & Related papers (2021-09-17T19:23:31Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the
Wild [101.70320427145388]
We propose a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-view data.
We evaluate our proposed approach on two large scale datasets.
arXiv Detail & Related papers (2020-03-17T08:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.