論文の概要: Template Free Reconstruction of Human-object Interaction with Procedural Interaction Generation
- arxiv url: http://arxiv.org/abs/2312.07063v3
- Date: Sat, 6 Apr 2024 12:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 01:56:13.343341
- Title: Template Free Reconstruction of Human-object Interaction with Procedural Interaction Generation
- Title(参考訳): テンプレートフリーによる手続き的相互作用生成による人間と物体の相互作用の再構築
- Authors: Xianghui Xie, Bharat Lal Bhatnagar, Jan Eric Lenssen, Gerard Pons-Moll,
- Abstract要約: 提案するProciGenは,多種多様なオブジェクトの相互作用と対話性の両方で,プロシージャ的にデータセットを生成する。
我々は3Dで1M以上の人間と物体の相互作用ペアを生成し、この大規模データを利用してHDM(Procedural Diffusion Model)を訓練する。
我々のHDMは、現実的な相互作用と高精度な人間と物体の形状の両方を学習する画像条件拡散モデルである。
- 参考スコア(独自算出の注目度): 38.08445005326031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing human-object interaction in 3D from a single RGB image is a challenging task and existing data driven methods do not generalize beyond the objects present in the carefully curated 3D interaction datasets. Capturing large-scale real data to learn strong interaction and 3D shape priors is very expensive due to the combinatorial nature of human-object interactions. In this paper, we propose ProciGen (Procedural interaction Generation), a method to procedurally generate datasets with both, plausible interaction and diverse object variation. We generate 1M+ human-object interaction pairs in 3D and leverage this large-scale data to train our HDM (Hierarchical Diffusion Model), a novel method to reconstruct interacting human and unseen objects, without any templates. Our HDM is an image-conditioned diffusion model that learns both realistic interaction and highly accurate human and object shapes. Experiments show that our HDM trained with ProciGen significantly outperforms prior methods that requires template meshes and that our dataset allows training methods with strong generalization ability to unseen object instances. Our code and data are released.
- Abstract(参考訳): 単一のRGB画像から3Dで人間とオブジェクトのインタラクションを再構築することは難しい作業であり、既存のデータ駆動手法は慎重に計算された3Dインタラクションデータセットに存在するオブジェクトを超えて一般化しない。
強力な相互作用と3次元形状の先行を学習するために大規模な実データをキャプチャすることは、人間と物体の相互作用の組合せの性質のために非常に高価である。
本稿では,ProciGen(Procedural Interaction Generation, 手続き的インタラクション生成)を提案する。
我々は3Dで1M以上の人間と物体の相互作用ペアを生成し、この大規模なデータを利用してHDM(Hierarchical Diffusion Model)を訓練する。
我々のHDMは、現実的な相互作用と高精度な人間と物体の形状の両方を学習する画像条件拡散モデルである。
ProciGenでトレーニングしたHDMは、テンプレートメッシュを必要とする事前メソッドよりも大幅に優れており、データセットは、オブジェクトインスタンスを発見できない強力な一般化能力を持つトレーニングメソッドを可能にします。
私たちのコードとデータはリリースされます。
関連論文リスト
- 3D-VirtFusion: Synthetic 3D Data Augmentation through Generative Diffusion Models and Controllable Editing [52.68314936128752]
本研究では,事前学習された大規模基盤モデルのパワーを活用して,3次元ラベル付きトレーニングデータを自動的に生成する新しいパラダイムを提案する。
各ターゲットセマンティッククラスに対して、まず、拡散モデルとチャットGPT生成したテキストプロンプトを介して、様々な構造と外観の1つのオブジェクトの2D画像を生成する。
我々は、これらの拡張画像を3Dオブジェクトに変換し、ランダムな合成によって仮想シーンを構築する。
論文 参考訳(メタデータ) (2024-08-25T09:31:22Z) - StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset [56.71580976007712]
本研究では,人間のメッシュと物体メッシュの表面から密にサンプリングされたアンカー間の人物体オフセットを用いて,人物体空間関係を表現することを提案する。
この表現に基づいて、画像から人・物間の空間関係の後方分布を推定するスタック正規化フロー(StackFLOW)を提案する。
最適化段階では、サンプルの可能性を最大化することにより、人体ポーズと物体6Dポーズを微調整する。
論文 参考訳(メタデータ) (2024-07-30T04:57:21Z) - HOI-M3:Capture Multiple Humans and Objects Interaction within Contextual Environment [43.6454394625555]
HOI-M3は、複数のhumanと複数のオブジェクトの相互作用をモデル化するための、新しい大規模データセットである。
密集したRGBとオブジェクト搭載IMU入力から、人間と物体の両方の正確な3Dトラッキングを提供する。
論文 参考訳(メタデータ) (2024-03-30T09:24:25Z) - HOIDiffusion: Generating Realistic 3D Hand-Object Interaction Data [42.49031063635004]
本研究では,現実的かつ多様な3次元ハンドオブジェクトインタラクションデータを生成するためのHOIDiffusionを提案する。
本モデルは,3次元手対象幾何学構造とテキスト記述を画像合成の入力として用いた条件拡散モデルである。
生成した3Dデータを6次元オブジェクトのポーズ推定学習に適用し,認識システムの改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-03-18T17:48:31Z) - Ins-HOI: Instance Aware Human-Object Interactions Recovery [44.02128629239429]
本稿では,エンド・ツー・エンドのインスタンス・アウェアなヒューマン・オブジェクト・インタラクション・リカバリ(Ins-HOI)フレームワークを提案する。
Ins-HOIはインスタンスレベルの再構築をサポートし、合理的で現実的な接触面を提供する。
我々は、現実世界の人間-椅子と手-物体の相互作用を伴う5.2kの高品質スキャンを含む、大規模で高忠実な3Dスキャンデータセットを収集します。
論文 参考訳(メタデータ) (2023-12-15T09:30:47Z) - Reconstructing Action-Conditioned Human-Object Interactions Using
Commonsense Knowledge Priors [42.17542596399014]
本稿では,画像から人-物間相互作用の多種多様な3次元モデルを推定する手法を提案する。
提案手法は,大規模言語モデルから高レベルのコモンセンス知識を抽出する。
本研究では,大規模な人-物間相互作用データセットを用いて,推定された3次元モデルを定量的に評価する。
論文 参考訳(メタデータ) (2022-09-06T13:32:55Z) - BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
マルチビューのRGBDフレームとそれに対応する3D SMPLとオブジェクトをアノテートしたアノテートコンタクトに適合させる。
このデータを用いて、自然環境における人間と物体を、容易に使用可能なマルチカメラで共同で追跡できるモデルを学ぶ。
論文 参考訳(メタデータ) (2022-04-14T13:21:19Z) - Estimating 3D Motion and Forces of Human-Object Interactions from
Internet Videos [49.52070710518688]
一つのRGBビデオからオブジェクトと対話する人の3D動作を再構築する手法を提案する。
本手法では,被験者の3次元ポーズを物体のポーズ,接触位置,人体の接触力とともに推定する。
論文 参考訳(メタデータ) (2021-11-02T13:40:18Z) - D3D-HOI: Dynamic 3D Human-Object Interactions from Videos [49.38319295373466]
本稿では,D3D-HOIについて紹介する。D3D-HOIは3次元オブジェクトのポーズ,形状,動きを,人間と物体の相互作用の時,地上の真理アノテーションを付加したモノクロビデオのデータセットである。
我々のデータセットは、様々な現実世界のシーンとカメラの視点から捉えた、いくつかの共通したオブジェクトで構成されている。
我々は、推定された3次元人間のポーズを利用して、物体の空間的レイアウトとダイナミクスをより正確に推定する。
論文 参考訳(メタデータ) (2021-08-19T00:49:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。