Inferring Parameter Distributions in Heterogeneous Motile Particle Ensembles: A Likelihood Approach for Second Order Langevin Models
- URL: http://arxiv.org/abs/2411.08692v1
- Date: Wed, 13 Nov 2024 15:27:02 GMT
- Title: Inferring Parameter Distributions in Heterogeneous Motile Particle Ensembles: A Likelihood Approach for Second Order Langevin Models
- Authors: Jan Albrecht, Manfred Opper, Robert Großmann,
- Abstract summary: Inference methods are required to understand and predict the motion patterns from time discrete trajectory data provided by experiments.
We propose a new method to approximate the likelihood for non-linear second order Langevin models.
We thereby pave the way for the systematic, data-driven inference of dynamical models for actively driven entities.
- Score: 0.8274836883472768
- License:
- Abstract: The inherent complexity of biological agents often leads to motility behavior that appears to have random components. Robust stochastic inference methods are therefore required to understand and predict the motion patterns from time discrete trajectory data provided by experiments. In many cases second order Langevin models are needed to adequately capture the motility. Additionally, population heterogeneity needs to be taken into account when analyzing data from several individual organisms. In this work, we describe a maximum likelihood approach to infer dynamical, stochastic models and, simultaneously, estimate the heterogeneity in a population of motile active particles from discretely sampled, stochastic trajectories. To this end we propose a new method to approximate the likelihood for non-linear second order Langevin models. We show that this maximum likelihood ansatz outperforms alternative approaches especially for short trajectories. Additionally, we demonstrate how a measure of uncertainty for the heterogeneity estimate can be derived. We thereby pave the way for the systematic, data-driven inference of dynamical models for actively driven entities based on trajectory data, deciphering temporal fluctuations and inter-particle variability.
Related papers
- ProGen: Revisiting Probabilistic Spatial-Temporal Time Series Forecasting from a Continuous Generative Perspective Using Stochastic Differential Equations [18.64802090861607]
ProGen Pro provides a robust solution that effectively captures dependencies while managing uncertainty.
Our experiments on four benchmark traffic datasets demonstrate that ProGen Pro outperforms state-of-the-art deterministic probabilistic models.
arXiv Detail & Related papers (2024-11-02T14:37:30Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Equivariant Flow Matching with Hybrid Probability Transport [69.11915545210393]
Diffusion Models (DMs) have demonstrated effectiveness in generating feature-rich geometries.
DMs typically suffer from unstable probability dynamics with inefficient sampling speed.
We introduce geometric flow matching, which enjoys the advantages of both equivariant modeling and stabilized probability dynamics.
arXiv Detail & Related papers (2023-12-12T11:13:13Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Stochastic Interpolants: A Unifying Framework for Flows and Diffusions [16.95541777254722]
A class of generative models that unifies flow-based and diffusion-based methods is introduced.
These models extend the framework proposed in Albergo & VandenEijnden (2023), enabling the use of a broad class of continuous-time processes called stochastic interpolants'
These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way.
arXiv Detail & Related papers (2023-03-15T17:43:42Z) - Uncertainty-Aware Pedestrian Trajectory Prediction via Distributional Diffusion [26.715578412088327]
We present a model-agnostic uncertainty-aware pedestrian trajectory prediction framework.
Unlike previous studies, we translate the predictiveity to explicit distributions, allowing it to generate plausible future trajectories.
Our framework is compatible with different neural net architectures.
arXiv Detail & Related papers (2023-03-15T04:58:43Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Autoregressive Denoising Diffusion Models for Multivariate Probabilistic
Time Series Forecasting [4.1573460459258245]
We use diffusion probabilistic models, a class of latent variable models closely connected to score matching and energy-based methods.
Our model learns gradients by optimizing a variational bound on the data likelihood and at inference time converts white noise into a sample of the distribution of interest.
arXiv Detail & Related papers (2021-01-28T15:46:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.