論文の概要: Code Membership Inference for Detecting Unauthorized Data Use in Code
Pre-trained Language Models
- arxiv url: http://arxiv.org/abs/2312.07200v1
- Date: Tue, 12 Dec 2023 12:07:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 16:11:39.398334
- Title: Code Membership Inference for Detecting Unauthorized Data Use in Code
Pre-trained Language Models
- Title(参考訳): コード事前学習言語モデルにおける不正データ検出のためのコードメンバーシップ推論
- Authors: Sheng Zhang, Hui Li
- Abstract要約: 本稿では,CPLMにおける不正コードの使用を検出するための最初の研究を開始する。
我々は、コードメンバーシップ推論タスクの異なる設定のためのフレームワークBuzzerを設計する。
- 参考スコア(独自算出の注目度): 7.6875396255520405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code pre-trained language models (CPLMs) have received great attention since
they can benefit various tasks that facilitate software development and
maintenance. However, CPLMs are trained on massive open-source code, raising
concerns about potential data infringement. This paper launches the first study
of detecting unauthorized code use in CPLMs, i.e., Code Membership Inference
(CMI) task. We design a framework Buzzer for different settings of CMI. Buzzer
deploys several inference techniques, including distilling the target CPLM,
ensemble inference, and unimodal and bimodal calibration. Extensive experiments
show that CMI can be achieved with high accuracy using Buzzer. Hence, Buzzer
can serve as a CMI tool and help protect intellectual property rights.
- Abstract(参考訳): コード事前訓練言語モデル(CPLM)は、ソフトウェア開発やメンテナンスを容易にする様々なタスクに役立てることができるため、大きな注目を集めている。
しかし、CPLMは大規模なオープンソースコードで訓練されており、潜在的なデータ侵害に関する懸念を提起している。
本稿では,CPLM(Code Membership Inference, CMI)タスクにおける不正コードの使用を検出するための最初の研究を開始する。
CMIの異なる設定のためのフレームワークBuzzerを設計する。
Buzzerは、ターゲットCPLMの蒸留、アンサンブル推論、一様および二様キャリブレーションなど、いくつかの推論手法を展開している。
広範な実験により、ブザーを用いてcmiを高精度に達成できることが示されている。
したがって、buzzerはcmiツールとして機能し、知的財産権を保護するのに役立つ。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [10.510325069289324]
LLMが生成するコードの信頼性向上を目的とした自己補充手法を提案する。
当社のアプローチは,初期コード内の潜在的なバグを特定するために,対象とする検証質問(VQ)に基づいています。
本手法は,LLMをターゲットとするVQと初期コードで再プロンプトすることで,潜在的なバグの修復を試みる。
論文 参考訳(メタデータ) (2024-05-22T19:02:50Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保存するために追加情報を埋め込む。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - Trained Without My Consent: Detecting Code Inclusion In Language Models Trained on Code [13.135962181354465]
コード監査は、開発済みのコードが標準、規制、著作権保護に準拠していることを保証する。
ソフトウェア開発プロセスにおけるコーディングアシスタントとしての最近のLarge Language Models(LLM)の出現は、コード監査に新たな課題をもたらしている。
LLMのトレーニングデータセットにコードを含むことを検出するモデルに依存しない、解釈可能な方法であるTraWiCを提案する。
論文 参考訳(メタデータ) (2024-02-14T16:41:35Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z) - Differentially Private Decoding in Large Language Models [14.221692239892207]
本稿では,復号段階で既に訓練済みのモデルに適用可能な,単純で分かり易く,計算的に軽量な摂動機構を提案する。
我々の摂動メカニズムはモデルに依存しず、どんな大規模言語モデルとも併用することができる。
論文 参考訳(メタデータ) (2022-05-26T20:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。