Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming
- URL: http://arxiv.org/abs/2312.07214v3
- Date: Thu, 21 Mar 2024 11:12:31 GMT
- Title: Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming
- Authors: Younes Lakhnati, Max Pascher, Jens Gerken,
- Abstract summary: We introduce a novel framework for a GPT-powered multi-robot testbed environment, based on a Unity Virtual Reality (VR) setting.
This system allows users to interact with robot agents through natural language, each powered by individual GPT cores.
A user study with 12 participants explores the effectiveness of GPT-4 and, more importantly, user strategies when being given the opportunity to converse in natural language within a multi-robot environment.
- Score: 4.779196219827508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a rapidly evolving digital landscape autonomous tools and robots are becoming commonplace. Recognizing the significance of this development, this paper explores the integration of Large Language Models (LLMs) like Generative pre-trained transformer (GPT) into human-robot teaming environments to facilitate variable autonomy through the means of verbal human-robot communication. In this paper, we introduce a novel framework for such a GPT-powered multi-robot testbed environment, based on a Unity Virtual Reality (VR) setting. This system allows users to interact with robot agents through natural language, each powered by individual GPT cores. By means of OpenAI's function calling, we bridge the gap between unstructured natural language input and structure robot actions. A user study with 12 participants explores the effectiveness of GPT-4 and, more importantly, user strategies when being given the opportunity to converse in natural language within a multi-robot environment. Our findings suggest that users may have preconceived expectations on how to converse with robots and seldom try to explore the actual language and cognitive capabilities of their robot collaborators. Still, those users who did explore where able to benefit from a much more natural flow of communication and human-like back-and-forth. We provide a set of lessons learned for future research and technical implementations of similar systems.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Socially Pertinent Robots in Gerontological Healthcare [78.35311825198136]
This paper is an attempt to partially answer the question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities.
Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.
arXiv Detail & Related papers (2024-04-11T08:43:37Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - A Human-Robot Mutual Learning System with Affect-Grounded Language
Acquisition and Differential Outcomes Training [0.1812164955222814]
The paper presents a novel human-robot interaction setup for identifying robot homeostatic needs.
We adopted a differential outcomes training protocol whereby the robot provides feedback specific to its internal needs.
We found evidence that DOT can enhance the human's learning efficiency, which in turn enables more efficient robot language acquisition.
arXiv Detail & Related papers (2023-10-20T09:41:31Z) - A Sign Language Recognition System with Pepper, Lightweight-Transformer,
and LLM [0.9775599530257609]
This research explores using lightweight deep neural network architectures to enable the humanoid robot Pepper to understand American Sign Language (ASL)
We introduce a lightweight and efficient model for ASL understanding optimized for embedded systems, ensuring rapid sign recognition while conserving computational resources.
We tailor interactions to allow the Pepper Robot to generate natural Co-Speech Gesture responses, laying the foundation for more organic and intuitive humanoid-robot dialogues.
arXiv Detail & Related papers (2023-09-28T23:54:41Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
This paper investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system.
We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration.
We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task.
arXiv Detail & Related papers (2023-08-30T11:35:21Z) - Natural Language Instructions for Intuitive Human Interaction with
Robotic Assistants in Field Construction Work [4.223718588030052]
This paper proposes a framework to allow human workers to interact with construction robots based on natural language instructions.
The proposed method consists of three stages: Natural Language Understanding (NLU), Information Mapping (IM), and Robot Control (RC)
arXiv Detail & Related papers (2023-07-09T15:02:34Z) - "No, to the Right" -- Online Language Corrections for Robotic
Manipulation via Shared Autonomy [70.45420918526926]
We present LILAC, a framework for incorporating and adapting to natural language corrections online during execution.
Instead of discrete turn-taking between a human and robot, LILAC splits agency between the human and robot.
We show that our corrections-aware approach obtains higher task completion rates, and is subjectively preferred by users.
arXiv Detail & Related papers (2023-01-06T15:03:27Z) - Reshaping Robot Trajectories Using Natural Language Commands: A Study of
Multi-Modal Data Alignment Using Transformers [33.7939079214046]
We provide a flexible language-based interface for human-robot collaboration.
We take advantage of recent advancements in the field of large language models to encode the user command.
We train the model using imitation learning over a dataset containing robot trajectories modified by language commands.
arXiv Detail & Related papers (2022-03-25T01:36:56Z) - Language Understanding for Field and Service Robots in a Priori Unknown
Environments [29.16936249846063]
This paper provides a novel learning framework that allows field and service robots to interpret and execute natural language instructions.
We use language as a "sensor" -- inferring spatial, topological, and semantic information implicit in natural language utterances.
We incorporate this distribution in a probabilistic language grounding model and infer a distribution over a symbolic representation of the robot's action space.
arXiv Detail & Related papers (2021-05-21T15:13:05Z) - Self-supervised reinforcement learning for speaker localisation with the
iCub humanoid robot [58.2026611111328]
Looking at a person's face is one of the mechanisms that humans rely on when it comes to filtering speech in noisy environments.
Having a robot that can look toward a speaker could benefit ASR performance in challenging environments.
We propose a self-supervised reinforcement learning-based framework inspired by the early development of humans.
arXiv Detail & Related papers (2020-11-12T18:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.