Language Understanding for Field and Service Robots in a Priori Unknown
Environments
- URL: http://arxiv.org/abs/2105.10396v1
- Date: Fri, 21 May 2021 15:13:05 GMT
- Title: Language Understanding for Field and Service Robots in a Priori Unknown
Environments
- Authors: Matthew R. Walter, Siddharth Patki, Andrea F. Daniele, Ethan
Fahnestock, Felix Duvallet, Sachithra Hemachandra, Jean Oh, Anthony Stentz,
Nicholas Roy, and Thomas M. Howard
- Abstract summary: This paper provides a novel learning framework that allows field and service robots to interpret and execute natural language instructions.
We use language as a "sensor" -- inferring spatial, topological, and semantic information implicit in natural language utterances.
We incorporate this distribution in a probabilistic language grounding model and infer a distribution over a symbolic representation of the robot's action space.
- Score: 29.16936249846063
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Contemporary approaches to perception, planning, estimation, and control have
allowed robots to operate robustly as our remote surrogates in uncertain,
unstructured environments. There is now an opportunity for robots to operate
not only in isolation, but also with and alongside humans in our complex
environments. Natural language provides an efficient and flexible medium
through which humans can communicate with collaborative robots. Through
significant progress in statistical methods for natural language understanding,
robots are now able to interpret a diverse array of free-form navigation,
manipulation, and mobile manipulation commands. However, most contemporary
approaches require a detailed prior spatial-semantic map of the robot's
environment that models the space of possible referents of the utterance.
Consequently, these methods fail when robots are deployed in new, previously
unknown, or partially observed environments, particularly when mental models of
the environment differ between the human operator and the robot. This paper
provides a comprehensive description of a novel learning framework that allows
field and service robots to interpret and correctly execute natural language
instructions in a priori unknown, unstructured environments. Integral to our
approach is its use of language as a "sensor" -- inferring spatial,
topological, and semantic information implicit in natural language utterances
and then exploiting this information to learn a distribution over a latent
environment model. We incorporate this distribution in a probabilistic language
grounding model and infer a distribution over a symbolic representation of the
robot's action space. We use imitation learning to identify a belief space
policy that reasons over the environment and behavior distributions. We
evaluate our framework through a variety of different navigation and mobile
manipulation experiments.
Related papers
- Grounding Robot Policies with Visuomotor Language Guidance [15.774237279917594]
We propose an agent-based framework for grounding robot policies to the current context.
The proposed framework is composed of a set of conversational agents designed for specific roles.
We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates.
arXiv Detail & Related papers (2024-10-09T02:00:37Z) - Context-Aware Command Understanding for Tabletop Scenarios [1.7082212774297747]
This paper presents a novel hybrid algorithm designed to interpret natural human commands in tabletop scenarios.
By integrating multiple sources of information, including speech, gestures, and scene context, the system extracts actionable instructions for a robot.
We discuss the strengths and limitations of the system, with particular focus on how it handles multimodal command interpretation.
arXiv Detail & Related papers (2024-10-08T20:46:39Z) - Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming [4.779196219827508]
We introduce a novel framework for a GPT-powered multi-robot testbed environment, based on a Unity Virtual Reality (VR) setting.
This system allows users to interact with robot agents through natural language, each powered by individual GPT cores.
A user study with 12 participants explores the effectiveness of GPT-4 and, more importantly, user strategies when being given the opportunity to converse in natural language within a multi-robot environment.
arXiv Detail & Related papers (2023-12-12T12:26:48Z) - Navigation with Large Language Models: Semantic Guesswork as a Heuristic
for Planning [73.0990339667978]
Navigation in unfamiliar environments presents a major challenge for robots.
We use language models to bias exploration of novel real-world environments.
We evaluate LFG in challenging real-world environments and simulated benchmarks.
arXiv Detail & Related papers (2023-10-16T06:21:06Z) - Open-World Object Manipulation using Pre-trained Vision-Language Models [72.87306011500084]
For robots to follow instructions from people, they must be able to connect the rich semantic information in human vocabulary.
We develop a simple approach, which leverages a pre-trained vision-language model to extract object-identifying information.
In a variety of experiments on a real mobile manipulator, we find that MOO generalizes zero-shot to a wide range of novel object categories and environments.
arXiv Detail & Related papers (2023-03-02T01:55:10Z) - Grounded Decoding: Guiding Text Generation with Grounded Models for
Embodied Agents [111.15288256221764]
Grounded-decoding project aims to solve complex, long-horizon tasks in a robotic setting by leveraging the knowledge of both models.
We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives.
We demonstrate how such grounded models can be obtained across three simulation and real-world domains, and that the proposed decoding strategy is able to solve complex, long-horizon tasks in a robotic setting by leveraging the knowledge of both models.
arXiv Detail & Related papers (2023-03-01T22:58:50Z) - "No, to the Right" -- Online Language Corrections for Robotic
Manipulation via Shared Autonomy [70.45420918526926]
We present LILAC, a framework for incorporating and adapting to natural language corrections online during execution.
Instead of discrete turn-taking between a human and robot, LILAC splits agency between the human and robot.
We show that our corrections-aware approach obtains higher task completion rates, and is subjectively preferred by users.
arXiv Detail & Related papers (2023-01-06T15:03:27Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
Large language models can encode a wealth of semantic knowledge about the world.
Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language.
We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions.
arXiv Detail & Related papers (2022-04-04T17:57:11Z) - Reshaping Robot Trajectories Using Natural Language Commands: A Study of
Multi-Modal Data Alignment Using Transformers [33.7939079214046]
We provide a flexible language-based interface for human-robot collaboration.
We take advantage of recent advancements in the field of large language models to encode the user command.
We train the model using imitation learning over a dataset containing robot trajectories modified by language commands.
arXiv Detail & Related papers (2022-03-25T01:36:56Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction.
We propose to leverage offline robot datasets with crowd-sourced natural language labels.
We find that our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%.
arXiv Detail & Related papers (2021-09-02T17:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.