SSTA: Salient Spatially Transformed Attack
- URL: http://arxiv.org/abs/2312.07258v1
- Date: Tue, 12 Dec 2023 13:38:00 GMT
- Title: SSTA: Salient Spatially Transformed Attack
- Authors: Renyang Liu, Wei Zhou, Sixin Wu, Jun Zhao, Kwok-Yan Lam
- Abstract summary: Deep neural networks (DNNs) are vulnerable to adversarial attacks.
In this paper, we propose the Salient Spatially Transformed Attack (SSTA) to craft imperceptible adversarial example (AE)
Compared to state-of-the-art baselines, experiments indicated that SSTA could effectively improve the imperceptibility of the AEs while maintaining a 100% attack success rate.
- Score: 18.998300969035885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive studies have demonstrated that deep neural networks (DNNs) are
vulnerable to adversarial attacks, which brings a huge security risk to the
further application of DNNs, especially for the AI models developed in the real
world. Despite the significant progress that has been made recently, existing
attack methods still suffer from the unsatisfactory performance of escaping
from being detected by naked human eyes due to the formulation of adversarial
example (AE) heavily relying on a noise-adding manner. Such mentioned
challenges will significantly increase the risk of exposure and result in an
attack to be failed. Therefore, in this paper, we propose the Salient Spatially
Transformed Attack (SSTA), a novel framework to craft imperceptible AEs, which
enhance the stealthiness of AEs by estimating a smooth spatial transform metric
on a most critical area to generate AEs instead of adding external noise to the
whole image. Compared to state-of-the-art baselines, extensive experiments
indicated that SSTA could effectively improve the imperceptibility of the AEs
while maintaining a 100\% attack success rate.
Related papers
- Enhancing Adversarial Transferability with Adversarial Weight Tuning [36.09966860069978]
adversarial examples (AEs) mislead the model while appearing benign to human observers.
AWT is a data-free tuning method that combines gradient-based and model-based attack methods to enhance the transferability of AEs.
arXiv Detail & Related papers (2024-08-18T13:31:26Z) - Eliminating Catastrophic Overfitting Via Abnormal Adversarial Examples Regularization [50.43319961935526]
Single-step adversarial training (SSAT) has demonstrated the potential to achieve both efficiency and robustness.
SSAT suffers from catastrophic overfitting (CO), a phenomenon that leads to a severely distorted classifier.
In this work, we observe that some adversarial examples generated on the SSAT-trained network exhibit anomalous behaviour.
arXiv Detail & Related papers (2024-04-11T22:43:44Z) - STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
arXiv Detail & Related papers (2024-03-30T13:28:53Z) - Detecting and Recovering Adversarial Examples from Extracting Non-robust
and Highly Predictive Adversarial Perturbations [15.669678743693947]
adversarial examples (AEs) are maliciously designed to fool target models.
Deep neural networks (DNNs) have been shown to be vulnerable against adversarial examples.
We propose a model-free AEs detection method, the whole process of which is free from querying the victim model.
arXiv Detail & Related papers (2022-06-30T08:48:28Z) - Robust Physical-World Attacks on Face Recognition [52.403564953848544]
Face recognition has been greatly facilitated by the development of deep neural networks (DNNs)
Recent studies have shown that DNNs are very vulnerable to adversarial examples, raising serious concerns on the security of real-world face recognition.
We study sticker-based physical attacks on face recognition for better understanding its adversarial robustness.
arXiv Detail & Related papers (2021-09-20T06:49:52Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
In a real-world scenario like autonomous driving, more attention should be devoted to real-world adversarial examples (RWAEs)
This paper presents an in-depth evaluation of the robustness of popular SS models by testing the effects of both digital and real-world adversarial patches.
arXiv Detail & Related papers (2021-08-13T11:49:09Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - MixDefense: A Defense-in-Depth Framework for Adversarial Example
Detection Based on Statistical and Semantic Analysis [14.313178290347293]
We propose a multilayer defense-in-depth framework for AE detection, namely MixDefense.
We leverage the noise' features extracted from the inputs to discover the statistical difference between natural images and tampered ones for AE detection.
We show that the proposed MixDefense solution outperforms the existing AE detection techniques by a considerable margin.
arXiv Detail & Related papers (2021-04-20T15:57:07Z) - SLAP: Improving Physical Adversarial Examples with Short-Lived
Adversarial Perturbations [19.14079118174123]
Short-Lived Adrial Perturbations (SLAP) is a novel technique that allows adversaries to realize physically robust real-world AE by using a light projector.
SLAP allows the adversary greater control over the attack compared to adversarial patches.
We study the feasibility of SLAP in the self-driving scenario, targeting both object detector and traffic sign recognition tasks.
arXiv Detail & Related papers (2020-07-08T14:11:21Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.