RMS: Redundancy-Minimizing Point Cloud Sampling for Real-Time Pose Estimation
- URL: http://arxiv.org/abs/2312.07337v3
- Date: Tue, 23 Apr 2024 12:47:03 GMT
- Title: RMS: Redundancy-Minimizing Point Cloud Sampling for Real-Time Pose Estimation
- Authors: Pavel Petracek, Kostas Alexis, Martin Saska,
- Abstract summary: We propose a novel point cloud sampling method named RMS that minimizes redundancy within a 3D point cloud.
We integrate RMS into the point-based KISS-ICP and feature-based LOAM odometry pipelines.
Experiments demonstrate that RMS outperforms state-of-the-art methods in speed, compression, and accuracy in well-conditioned and geometrically-degenerated settings.
- Score: 13.163076804805732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The typical point cloud sampling methods used in state estimation for mobile robots preserve a high level of point redundancy. This redundancy unnecessarily slows down the estimation pipeline and may cause drift under real-time constraints. Such undue latency becomes a bottleneck for resource-constrained robots (especially UAVs), requiring minimal delay for agile and accurate operation. We propose a novel, deterministic, uninformed, and single-parameter point cloud sampling method named RMS that minimizes redundancy within a 3D point cloud. In contrast to the state of the art, RMS balances the translation-space observability by leveraging the fact that linear and planar surfaces inherently exhibit high redundancy propagated into iterative estimation pipelines. We define the concept of gradient flow, quantifying the local surface underlying a point. We also show that maximizing the entropy of the gradient flow minimizes point redundancy for robot ego-motion estimation. We integrate RMS into the point-based KISS-ICP and feature-based LOAM odometry pipelines and evaluate experimentally on KITTI, Hilti-Oxford, and custom datasets from multirotor UAVs. The experiments demonstrate that RMS outperforms state-of-the-art methods in speed, compression, and accuracy in well-conditioned as well as in geometrically-degenerated settings.
Related papers
- DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
Recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms.
These RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation.
We propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer.
arXiv Detail & Related papers (2022-04-18T17:53:44Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDF is a continuous learning system for real-time signed distance field reconstruction.
It produces more accurate reconstructions and better approximations of collision costs and gradients.
arXiv Detail & Related papers (2022-04-05T15:48:39Z) - RMS-FlowNet: Efficient and Robust Multi-Scale Scene Flow Estimation for
Large-Scale Point Clouds [13.62166506575236]
RMS-FlowNet is a novel end-to-end learning-based architecture for accurate and efficient scene flow estimation.
We show that our model presents a competitive ability to generalize towards the real-world scenes of KITTI data set without fine-tuning.
arXiv Detail & Related papers (2022-04-01T11:02:58Z) - Variational encoder geostatistical analysis (VEGAS) with an application
to large scale riverine bathymetry [1.2093180801186911]
Estimation of riverbed profiles, also known as bathymetry, plays a vital role in many applications.
We propose a reduced-order model (ROM) based approach that utilizes a variational autoencoder (VAE), a type of deep neural network with a narrow layer in the middle.
We have tested our inversion approach on a one-mile reach of the Savannah River, GA, USA.
arXiv Detail & Related papers (2021-11-23T08:27:48Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform.
We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer.
We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation.
arXiv Detail & Related papers (2021-05-10T15:16:14Z) - FESTA: Flow Estimation via Spatial-Temporal Attention for Scene Point
Clouds [28.899804787744202]
Scene flow depicts the dynamics of a 3D scene, which is critical for various applications such as autonomous driving, robot navigation, AR/VR, etc.
It remains challenging to extract scene flow from point clouds due to sparsity and irregularity in typical point cloud sampling patterns.
A novel Spatial Abstraction with Attention (SA2) layer is proposed to alleviate the unstable abstraction problem.
A Temporal Abstraction with Attention (TA2) layer is proposed to rectify attention in temporal domain, leading to benefits with motions scaled in a larger range.
arXiv Detail & Related papers (2021-04-01T23:04:04Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.