ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Biomedical Image
- URL: http://arxiv.org/abs/2312.07381v3
- Date: Tue, 16 Jul 2024 21:21:42 GMT
- Title: ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Biomedical Image
- Authors: Hallee E. Wong, Marianne Rakic, John Guttag, Adrian V. Dalca,
- Abstract summary: We present emphScribblePrompt, a flexible neural network based interactive segmentation tool for biomedical imaging.
In a user study with domain experts, ScribblePrompt reduced annotation time by 28% while improving Dice by 15% compared to the next best method.
We showcase ScribblePrompt in an interactive demo, provide code, and release a dataset of scribble annotations at https://scribbleprompt.csail.mit.edu.
- Score: 4.076537350106898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biomedical image segmentation is a crucial part of both scientific research and clinical care. With enough labelled data, deep learning models can be trained to accurately automate specific biomedical image segmentation tasks. However, manually segmenting images to create training data is highly labor intensive and requires domain expertise. We present \emph{ScribblePrompt}, a flexible neural network based interactive segmentation tool for biomedical imaging that enables human annotators to segment previously unseen structures using scribbles, clicks, and bounding boxes. Through rigorous quantitative experiments, we demonstrate that given comparable amounts of interaction, ScribblePrompt produces more accurate segmentations than previous methods on datasets unseen during training. In a user study with domain experts, ScribblePrompt reduced annotation time by 28% while improving Dice by 15% compared to the next best method. ScribblePrompt's success rests on a set of careful design decisions. These include a training strategy that incorporates both a highly diverse set of images and tasks, novel algorithms for simulated user interactions and labels, and a network that enables fast inference. We showcase ScribblePrompt in an interactive demo, provide code, and release a dataset of scribble annotations at https://scribbleprompt.csail.mit.edu
Related papers
- Microscopy Image Segmentation via Point and Shape Regularized Data
Synthesis [9.47802391546853]
We develop a unified pipeline for microscopy image segmentation using synthetically generated training data.
Our framework achieves comparable results to models trained on authentic microscopy images with dense labels.
arXiv Detail & Related papers (2023-08-18T22:00:53Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
We propose PGV-CL, a novel pseudo-label guided cross-video contrast learning method to boost scene segmentation.
We extensively evaluate our method on a public robotic surgery dataset EndoVis18 and a public cataract dataset CaDIS.
arXiv Detail & Related papers (2022-07-20T05:42:19Z) - Suggestive Annotation of Brain MR Images with Gradient-guided Sampling [12.928940875474378]
We propose an efficient annotation framework for brain MR images that can suggest informative sample images for human experts to annotate.
We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation.
The proposed framework demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.
arXiv Detail & Related papers (2022-06-02T12:23:44Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Going to Extremes: Weakly Supervised Medical Image Segmentation [12.700841704699615]
We suggest using minimal user interaction in the form of extreme point clicks to train a segmentation model.
An initial segmentation is generated based on the extreme points utilizing the random walker algorithm.
This initial segmentation is then used as a noisy supervision signal to train a fully convolutional network.
arXiv Detail & Related papers (2020-09-25T00:28:10Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.