How Well Does GPT-4V(ision) Adapt to Distribution Shifts? A Preliminary
Investigation
- URL: http://arxiv.org/abs/2312.07424v3
- Date: Sun, 25 Feb 2024 08:10:18 GMT
- Title: How Well Does GPT-4V(ision) Adapt to Distribution Shifts? A Preliminary
Investigation
- Authors: Zhongyi Han, Guanglin Zhou, Rundong He, Jindong Wang, Tailin Wu,
Yilong Yin, Salman Khan, Lina Yao, Tongliang Liu, Kun Zhang
- Abstract summary: GPT-4V acts as the most advanced publicly accessible multimodal foundation model.
This study rigorously evaluates GPT-4V's adaptability and generalization capabilities in dynamic environments.
- Score: 90.93999543169296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In machine learning, generalization against distribution shifts -- where
deployment conditions diverge from the training scenarios -- is crucial,
particularly in fields like climate modeling, biomedicine, and autonomous
driving. The emergence of foundation models, distinguished by their extensive
pretraining and task versatility, has led to an increased interest in their
adaptability to distribution shifts. GPT-4V(ision) acts as the most advanced
publicly accessible multimodal foundation model, with extensive applications
across various domains, including anomaly detection, video understanding, image
generation, and medical diagnosis. However, its robustness against data
distributions remains largely underexplored. Addressing this gap, this study
rigorously evaluates GPT-4V's adaptability and generalization capabilities in
dynamic environments, benchmarking against prominent models like CLIP, LLaVA,
and Gemini. We delve into GPT-4V's zero-shot generalization across 13 diverse
datasets spanning natural, medical, and molecular domains. We further
investigate its adaptability to controlled data perturbations and examine the
efficacy of in-context learning as a tool to enhance its adaptation. Our
findings delineate GPT-4V's capability boundaries in distribution shifts,
shedding light on its strengths and limitations across various scenarios.
Importantly, this investigation contributes to our understanding of how AI
foundation models generalize to distribution shifts, offering pivotal insights
into their adaptability and robustness. The code is publicly available at
https://github.com/jameszhou-gl/gpt-4v-distribution-shift.
Related papers
- Robust Computer Vision in an Ever-Changing World: A Survey of Techniques
for Tackling Distribution Shifts [20.17397328893533]
AI applications are becoming increasingly visible to the general public.
There is a notable gap between the theoretical assumptions researchers make about computer vision models and the reality those models face when deployed in the real world.
One of the critical reasons for this gap is a challenging problem known as distribution shift.
arXiv Detail & Related papers (2023-12-03T23:40:12Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
We analyze the latest model, GPT-4V, to deepen the understanding of LMMs.
GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs makes it a powerful multimodal generalist system.
GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods.
arXiv Detail & Related papers (2023-09-29T17:34:51Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Curriculum-Based Augmented Fourier Domain Adaptation for Robust Medical
Image Segmentation [18.830738606514736]
This work proposes the Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA) for robust medical image segmentation.
In particular, our curriculum learning strategy is based on the causal relationship of a model under different levels of data shift.
Experiments on two segmentation tasks of Retina and Nuclei collected from multiple sites and scanners suggest that our proposed method yields superior adaptation and generalization performance.
arXiv Detail & Related papers (2023-06-06T08:56:58Z) - Maximizing Model Generalization for Machine Condition Monitoring with
Self-Supervised Learning and Federated Learning [4.214064911004321]
Deep Learning can diagnose faults and assess machine health from raw condition monitoring data without manually designed statistical features.
Traditional supervised learning may struggle to learn compact, discriminative representations that generalize to unseen target domains.
This study proposes focusing on maximizing the feature generality on the source domain and applying TL via weight transfer to copy the model to the target domain.
arXiv Detail & Related papers (2023-04-27T17:57:54Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
Source-free domain adaptation (SFDA) was introduced to address knowledge transfer between different domains in the absence of source data.
In unsupervised SFDA, the diversity is limited to learning a single hypothesis on the source or learning multiple hypotheses with a shared feature extractor.
We propose a novel unsupervised SFDA algorithm that promotes representational diversity through the use of separate feature extractors.
arXiv Detail & Related papers (2023-04-06T00:20:19Z) - Heterogeneous Domain Adaptation and Equipment Matching: DANN-based
Alignment with Cyclic Supervision (DBACS) [3.4519649635864584]
This work introduces the Domain Adaptation Neural Network with Cyclic Supervision (DBACS) approach.
DBACS addresses the issue of model generalization through domain adaptation, specifically for heterogeneous data.
This work also includes subspace alignment and a multi-view learning that deals with heterogeneous representations.
arXiv Detail & Related papers (2023-01-03T10:56:25Z) - Unleashing the Power of Graph Data Augmentation on Covariate
Distribution Shift [50.98086766507025]
We propose a simple-yet-effective data augmentation strategy, Adversarial Invariant Augmentation (AIA)
AIA aims to extrapolate and generate new environments, while concurrently preserving the original stable features during the augmentation process.
arXiv Detail & Related papers (2022-11-05T07:55:55Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.