Dynamics Harmonic Analysis of Robotic Systems: Application in Data-Driven Koopman Modelling
- URL: http://arxiv.org/abs/2312.07457v3
- Date: Tue, 4 Jun 2024 13:39:17 GMT
- Title: Dynamics Harmonic Analysis of Robotic Systems: Application in Data-Driven Koopman Modelling
- Authors: Daniel OrdoƱez-Apraez, Vladimir Kostic, Giulio Turrisi, Pietro Novelli, Carlos Mastalli, Claudio Semini, Massimiliano Pontil,
- Abstract summary: We introduce the use of harmonic analysis to decompose the state space of symmetric robotic systems into isotypic subspaces.
For linear dynamics, we characterize how this decomposition leads to a subdivision of the dynamics into independent linear systems on each subspace.
Our architecture, validated on synthetic systems and the dynamics of locomotion of a quadrupedal robot, exhibits enhanced generalization, sample efficiency, and interpretability.
- Score: 24.738444847113232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the use of harmonic analysis to decompose the state space of symmetric robotic systems into orthogonal isotypic subspaces. These are lower-dimensional spaces that capture distinct, symmetric, and synergistic motions. For linear dynamics, we characterize how this decomposition leads to a subdivision of the dynamics into independent linear systems on each subspace, a property we term dynamics harmonic analysis (DHA). To exploit this property, we use Koopman operator theory to propose an equivariant deep-learning architecture that leverages the properties of DHA to learn a global linear model of the system dynamics. Our architecture, validated on synthetic systems and the dynamics of locomotion of a quadrupedal robot, exhibits enhanced generalization, sample efficiency, and interpretability, with fewer trainable parameters and computational costs.
Related papers
- Automated Global Analysis of Experimental Dynamics through Low-Dimensional Linear Embeddings [3.825457221275617]
We introduce a data-driven computational framework to derive low-dimensional linear models for nonlinear dynamical systems.
This framework enables global stability analysis through interpretable linear models that capture the underlying system structure.
Our method offers a promising pathway to analyze complex dynamical behaviors across fields such as physics, climate science, and engineering.
arXiv Detail & Related papers (2024-11-01T19:27:47Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Physically Analyzable AI-Based Nonlinear Platoon Dynamics Modeling During Traffic Oscillation: A Koopman Approach [4.379212829795889]
There exists a critical need for a modeling methodology with high accuracy while concurrently achieving physical analyzability.
This paper proposes an AI-based Koopman approach to model the unknown nonlinear platoon dynamics harnessing the power of AI.
arXiv Detail & Related papers (2024-06-20T19:35:21Z) - Morphological Symmetries in Robotics [45.32599550966704]
morphological symmetries are intrinsic properties of the robot's morphology.
These symmetries extend to the robot's state space and sensor measurements.
For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models.
In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics.
arXiv Detail & Related papers (2024-02-23T17:21:21Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Autoencoders for discovering manifold dimension and coordinates in data
from complex dynamical systems [0.0]
Autoencoder framework combines implicit regularization with internal linear layers and $L$ regularization (weight decay)
We show that this framework can be naturally extended for applications of state-space modeling and forecasting.
arXiv Detail & Related papers (2023-05-01T21:14:47Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Discovering Sparse Interpretable Dynamics from Partial Observations [0.0]
We propose a machine learning framework for discovering these governing equations using only partial observations.
Our tests show that this method can successfully reconstruct the full system state.
arXiv Detail & Related papers (2021-07-22T18:23:23Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
We present an approach to learn such motions from a limited number of human demonstrations.
The complex motions are encoded as rollouts of a stable dynamical system.
The efficacy of this approach is demonstrated through validation on an established benchmark as well demonstrations collected on a real-world robotic system.
arXiv Detail & Related papers (2020-05-27T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.