Discovering Sparse Interpretable Dynamics from Partial Observations
- URL: http://arxiv.org/abs/2107.10879v1
- Date: Thu, 22 Jul 2021 18:23:23 GMT
- Title: Discovering Sparse Interpretable Dynamics from Partial Observations
- Authors: Peter Y. Lu, Joan Ari\~no, Marin Solja\v{c}i\'c
- Abstract summary: We propose a machine learning framework for discovering these governing equations using only partial observations.
Our tests show that this method can successfully reconstruct the full system state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying the governing equations of a nonlinear dynamical system is key to
both understanding the physical features of the system and constructing an
accurate model of the dynamics that generalizes well beyond the available data.
We propose a machine learning framework for discovering these governing
equations using only partial observations, combining an encoder for state
reconstruction with a sparse symbolic model. Our tests show that this method
can successfully reconstruct the full system state and identify the underlying
dynamics for a variety of ODE and PDE systems.
Related papers
- Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
We employ a hybrid neural ODE structure to learn governing equations of partially-observed dynamical systems.
We demonstrate that the method is capable of successfully learning the true underlying governing equations of unobserved states within these systems.
arXiv Detail & Related papers (2024-04-29T10:28:14Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Variational Deep Learning for the Identification and Reconstruction of
Chaotic and Stochastic Dynamical Systems from Noisy and Partial Observations [15.82296284460491]
The identification of governing equations remains challenging when dealing with noisy and partial observations.
Within the proposed framework, we learn an inference model to reconstruct the true states of the system.
This framework bridges classical data assimilation and state-of-the-art machine learning techniques.
arXiv Detail & Related papers (2020-09-04T16:48:00Z) - Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control [14.24939133094439]
We introduce Symplectic ODE-Net (SymODEN), a deep learning framework which can infer the dynamics of a physical system.
In particular, we enforce Hamiltonian dynamics with control to learn the underlying dynamics in a transparent way.
This framework, by offering interpretable, physically-consistent models for physical systems, opens up new possibilities for synthesizing model-based control strategies.
arXiv Detail & Related papers (2019-09-26T13:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.