GP+: A Python Library for Kernel-based learning via Gaussian Processes
- URL: http://arxiv.org/abs/2312.07694v2
- Date: Tue, 4 Jun 2024 19:34:51 GMT
- Title: GP+: A Python Library for Kernel-based learning via Gaussian Processes
- Authors: Amin Yousefpour, Zahra Zanjani Foumani, Mehdi Shishehbor, Carlos Mora, Ramin Bostanabad,
- Abstract summary: We introduce GP+, an open-source library for kernel-based learning via Gaussian processes (GPs)
GP+ is built on PyTorch and provides a user-friendly and object-oriented tool for probabilistic learning and inference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce GP+, an open-source library for kernel-based learning via Gaussian processes (GPs) which are powerful statistical models that are completely characterized by their parametric covariance and mean functions. GP+ is built on PyTorch and provides a user-friendly and object-oriented tool for probabilistic learning and inference. As we demonstrate with a host of examples, GP+ has a few unique advantages over other GP modeling libraries. We achieve these advantages primarily by integrating nonlinear manifold learning techniques with GPs' covariance and mean functions. As part of introducing GP+, in this paper we also make methodological contributions that (1) enable probabilistic data fusion and inverse parameter estimation, and (2) equip GPs with parsimonious parametric mean functions which span mixed feature spaces that have both categorical and quantitative variables. We demonstrate the impact of these contributions in the context of Bayesian optimization, multi-fidelity modeling, sensitivity analysis, and calibration of computer models.
Related papers
- A New Reliable & Parsimonious Learning Strategy Comprising Two Layers of Gaussian Processes, to Address Inhomogeneous Empirical Correlation Structures [0.138120109831448]
We present a new strategy for learning the functional relation between a pair of variables, while addressing inhomogeneities in the correlation structure of the available data.
We model the sought function as a sample function of a non-stationary Gaussian Process (GP), that nests within itself multiple other GPs.
We illustrate this new learning strategy on a real dataset.
arXiv Detail & Related papers (2024-04-18T19:21:28Z) - Shallow and Deep Nonparametric Convolutions for Gaussian Processes [0.0]
We introduce a nonparametric process convolution formulation for GPs that alleviates weaknesses by using a functional sampling approach.
We propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models.
arXiv Detail & Related papers (2022-06-17T19:03:04Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
This paper presents an ensemble of GP models with weights adapted to the labeled data collected incrementally.
Building on this novel EGP model, a suite of acquisition functions emerges based on the uncertainty and disagreement rules.
An adaptively weighted ensemble of EGP-based acquisition functions is also introduced to further robustify performance.
arXiv Detail & Related papers (2022-06-10T11:48:49Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Scaling Gaussian Process Optimization by Evaluating a Few Unique
Candidates Multiple Times [119.41129787351092]
We show that sequential black-box optimization based on GPs can be made efficient by sticking to a candidate solution for multiple evaluation steps.
We modify two well-established GP-Opt algorithms, GP-UCB and GP-EI to adapt rules from batched GP-Opt.
arXiv Detail & Related papers (2022-01-30T20:42:14Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - Latent Map Gaussian Processes for Mixed Variable Metamodeling [0.0]
We introduce latent map Gaussian processes (LMGPs) that inherit the attractive properties of GPs but are also applicable to mixed data.
We show that LMGPs can handle variable-length inputs and provide insights into how qualitative inputs affect the response or interact with each other.
We also provide a neural network interpretation of LMGPs and study the effect of prior latent representations on their performance.
arXiv Detail & Related papers (2021-02-07T22:21:53Z) - MOGPTK: The Multi-Output Gaussian Process Toolkit [71.08576457371433]
We present MOGPTK, a Python package for multi-channel data modelling using Gaussian processes (GP)
The aim of this toolkit is to make multi-output GP (MOGP) models accessible to researchers, data scientists, and practitioners alike.
arXiv Detail & Related papers (2020-02-09T23:34:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.