論文の概要: A Physics Lab Inside Your Head: Quantum Thought Experiments as an
Educational Tool
- arxiv url: http://arxiv.org/abs/2312.07840v1
- Date: Wed, 13 Dec 2023 02:09:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-14 16:57:15.526027
- Title: A Physics Lab Inside Your Head: Quantum Thought Experiments as an
Educational Tool
- Title(参考訳): 頭の中の物理学研究室: 量子思考実験を教育ツールとして
- Authors: Maria Violaris
- Abstract要約: 量子回路を用いて思考実験を提示することで、明らかな量子パラドックスを解き放つ方法を示す。
量子の最初の導入として、どのように思考実験を使用できるかを説明します。
11歳以上の高校生を対象とした「量子爆弾テスター」に基づくワークショップについて概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thought experiments are where logical reasoning meets storytelling,
catalysing progress in quantum science and technology. Schr\"odinger's famous
cat brought quantum science to the public consciousness, while Deutsch's
thought experiment to test the many-worlds and Copenhagen interpretations
involved the first conception of a quantum computer. I will show how presenting
thought experiments using quantum circuits can demystify apparent quantum
paradoxes, and provide fun, conceptually important activities for learners to
implement themselves on near-term quantum devices. Additionally, I will explain
how thought experiments can be used as a first introduction to quantum, and
outline a workshop based on the "quantum bomb tester" for school students as
young as 11. This paper draws upon my experience in developing and delivering
quantum computing workshops in Oxford, and in creating a quantum paradoxes
content series with IBM Quantum of videos, blogs and code tutorials.
- Abstract(参考訳): 思考実験は、論理的推論がストーリーテリングを満たし、量子科学とテクノロジーの進歩を触媒する場である。
Schr\"odinger's famous cat brought quantum science to the public consciousness, while Deutsch's thought experiment to test the many-worlds and Copenhagen interpretations involved the first conception of a quantum computer. I will show how presenting thought experiments using quantum circuits can demystify apparent quantum paradoxes, and provide fun, conceptually important activities for learners to implement themselves on near-term quantum devices. Additionally, I will explain how thought experiments can be used as a first introduction to quantum, and outline a workshop based on the "quantum bomb tester" for school students as young as 11.
本稿は、オックスフォードにおける量子コンピューティングワークショップの開発と提供、およびIBM Quantum of Video、ブログ、コードチュートリアルによる量子パラドックスコンテンツシリーズの作成における私の経験を引用する。
関連論文リスト
- A Short Guide to Quantum Mechanics -- Some Basic Principles [0.0]
量子物理学が重要か、奇妙か、理解不能か、という問いから始まります。
これはなぜ粒子が波のように振る舞うのか、また不確実性やランダム性が物理学に入るのかを説明する。
磁気共鳴イメージング(MRI)や量子コンピューティングといった最近の話題も取り上げられている。
論文 参考訳(メタデータ) (2024-08-01T17:14:54Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
任意の文脈性ゲームは、単一の量子デバイスを含む運用上の「文脈性テスト」にコンパイル可能であることを示す。
我々の研究は、暗号を用いて単一の量子デバイスのサブシステム内で空間分離を強制すると見なすことができる。
論文 参考訳(メタデータ) (2024-05-10T19:30:23Z) - Quantum computing: principles and applications [3.717431207294639]
本稿では,量子コンピューティングの基本原理と,量子コンピュータの多層アーキテクチャを紹介する。
成熟した実験プラットフォームである核磁気共鳴(NMR)プラットフォームに基づいて、量子コンピューティングを実験的に実装するための基本的な手順を紹介する。
論文 参考訳(メタデータ) (2023-10-13T20:12:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Is there evidence for exponential quantum advantage in quantum
chemistry? [45.33336180477751]
量子力学デバイスを使って他の量子システムをシミュレートするというアイデアは、一般にファインマンに言及されている。
この問題に対して指数的スピードアップが一般に利用できないと仮定するのは賢明かもしれない。
論文 参考訳(メタデータ) (2022-08-03T16:33:57Z) - Experimenting quantum phenomena on NISQ computers using high level
quantum programming [0.0]
我々は,量子消去器,エリツル・ベイドマン爆弾,ハイレベルプログラミング言語を用いたハーディズパラドックス実験を実行する。
結果は、最大3キュービットの回路に対する高い信頼性を持つ量子力学の理論的な予測と一致している。
論文 参考訳(メタデータ) (2021-11-02T15:52:49Z) - Quantum information and beyond -- with quantum candies [0.0]
我々はここで「クエンタム・キャンディー」を調査し、拡張し、拡張する(Jacobsによって発明された)。
量子」キャンディーは量子ビット、相補性、非閉鎖原理、絡み合いなど、量子情報の基本的な概念を記述している。
これらの実演は親しみやすい方法で行われ、これは高校生に説明できるが、重ね合わせの難解な概念や数学は使わない。
論文 参考訳(メタデータ) (2021-09-30T16:05:33Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z) - Quantum Information for Particle Theorists [0.0]
理論高等研究所(TASI 2020)での講義は2020年6月1-26日。
対象となるトピックは、量子回路、絡み合い、量子テレポーテーション、ベルの不等式、量子エントロピー、デコヒーレンスである。
PythonノートブックとMathematicaノートブックへのリンクにより、読者は計算を再現して拡張でき、量子シミュレータで5つの実験を行うことができる。
論文 参考訳(メタデータ) (2020-10-06T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。