論文の概要: Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification
- arxiv url: http://arxiv.org/abs/2312.07870v1
- Date: Wed, 13 Dec 2023 03:17:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 12:26:52.781953
- Title: Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification
- Title(参考訳): MLaaSにおけるグラフニューラルネットワークのセキュア化:クエリベースの積分検証の包括的実現
- Authors: Bang Wu, Xingliang Yuan, Shuo Wang, Qi Li, Minhui Xue, Shirui Pan,
- Abstract要約: 我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
- 参考スコア(独自算出の注目度): 68.86863899919358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of Graph Neural Networks (GNNs) within Machine Learning as a Service (MLaaS) has opened up new attack surfaces and an escalation in security concerns regarding model-centric attacks. These attacks can directly manipulate the GNN model parameters during serving, causing incorrect predictions and posing substantial threats to essential GNN applications. Traditional integrity verification methods falter in this context due to the limitations imposed by MLaaS and the distinct characteristics of GNN models. In this research, we introduce a groundbreaking approach to protect GNN models in MLaaS from model-centric attacks. Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs, and accommodating varying pre-deployment knowledge of the models. We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms. To deal with advanced attackers who know our mechanisms in advance, we introduce randomized fingerprint nodes within our design. The experimental evaluation demonstrates that our method can detect five representative adversarial model-centric attacks, displaying 2 to 4 times greater efficiency compared to baselines.
- Abstract(参考訳): 機械学習・アズ・ア・サービス(MLaaS)におけるグラフニューラルネットワーク(GNN)の展開により、新たな攻撃面がオープンになり、モデル中心の攻撃に関するセキュリティ上の懸念がエスカレーションされた。
これらの攻撃は、サービス中にGNNモデルパラメータを直接操作することができ、誤った予測を引き起こし、本質的なGNNアプリケーションに重大な脅威を引き起こす。
従来の整合性検証手法は、MLaaSが課した制限とGNNモデルの異なる特徴により、この文脈で失敗する。
本研究では,MLaaSにおけるGNNモデルをモデル中心攻撃から保護するための画期的なアプローチを提案する。
提案手法は,GNNの完全性に対する総合的な検証スキーマ,トランスダクティブGNNとインダクティブGNNの両方を考慮して,モデルに対する様々な事前デプロイ知識の調整を含む。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
我々のメカニズムを事前に知っている先進的な攻撃者に対処するために、我々は設計の中にランダム化された指紋ノードを導入する。
実験により,本手法は,ベースラインの2倍から4倍の効率で,5つの敵モデル中心攻撃を検出できることが示された。
関連論文リスト
- Identifying Backdoored Graphs in Graph Neural Network Training: An Explanation-Based Approach with Novel Metrics [13.93535590008316]
グラフニューラルネットワーク(GNN)は多くのドメインで人気を集めているが、バックドア攻撃に弱い。
グラフレベルの説明を創造的に活用する新しい検出法を考案した。
提案手法は, バックドア攻撃に対するGNNの安全性向上に寄与し, 高い検出性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-03-26T22:41:41Z) - Problem space structural adversarial attacks for Network Intrusion Detection Systems based on Graph Neural Networks [8.629862888374243]
本稿では,ネットワーク侵入検知におけるGNNに適した敵攻撃の最初の形式化を提案する。
我々は、現実のシナリオにおいて、実行可能な構造攻撃を実行するために、攻撃者が考慮すべき問題空間の制約を概説し、モデル化する。
以上の結果から,古典的特徴に基づく攻撃に対するモデルの堅牢性の向上が示唆された。
論文 参考訳(メタデータ) (2024-03-18T14:40:33Z) - A Simple and Yet Fairly Effective Defense for Graph Neural Networks [18.140756786259615]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ上での機械学習の主要なアプローチとして登場した。
既存の対向性摂動に対する防御法は、時間的複雑さに悩まされている。
本稿では,ノイズを基礎となるモデルのアーキテクチャに組み込む新しい防御手法であるNoisyGNNを紹介する。
論文 参考訳(メタデータ) (2024-02-21T18:16:48Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
グラフニューラルネットワーク(GNN)は,グラフベースのタスクにおいて,目立ったグラフ学習モデルとして登場した。
悪意のある攻撃者は、入力グラフデータに摂動を追加することで、予測の公平度を容易に損なうことができる。
本稿では, ELEGANT というフレームワークを提案し, GNN の公正度レベルにおける認証防御の新たな課題について検討する。
論文 参考訳(メタデータ) (2023-11-05T20:29:40Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
本稿では,グラフとして構造化された攻撃の流れパターンを学習するための新しいグラフニューラルネットワーク(GNN)モデルを提案する。
我々のモデルは従来の実験と同等の精度を維持することができる一方、最先端のML技術は敵攻撃下で50%の精度(F1スコア)を低下させる。
論文 参考訳(メタデータ) (2021-07-30T16:56:39Z) - Membership Inference Attack on Graph Neural Networks [1.6457778420360536]
我々は、トレーニングされたGNNモデルが、トレーニングされたEmphmemberノードに関する情報を漏洩させる方法について焦点を当てる。
訓練されたモデルの後部を利用した最も単純な攻撃モデルを選択する。
意外で心配な事実は、ターゲットモデルがうまく一般化しても攻撃が成功することである。
論文 参考訳(メタデータ) (2021-01-17T02:12:35Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。