論文の概要: Multi-perspective Feedback-attention Coupling Model for Continuous-time Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2312.07983v2
- Date: Wed, 24 Apr 2024 09:08:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 23:17:45.011899
- Title: Multi-perspective Feedback-attention Coupling Model for Continuous-time Dynamic Graphs
- Title(参考訳): 連続時間動的グラフに対するマルチパースペクティブフィードバック・アテンション結合モデル
- Authors: Xiaobo Zhu, Yan Wu, Zhipeng Li, Hailong Su, Jin Che, Zhanheng Chen, Liying Wang,
- Abstract要約: 本稿では,MPFA(Multi-Perspective Feedback-Attention Coupling)モデルを提案する。
MPFAは進化と生の両方の観点から情報を取り入れ、観察されたプロセスのインターリーブされたダイナミクスを効率的に学習する。
自己組織型データセットと7つの公開データセットの実験結果から,提案モデルの有効性と競争性を検証した。
- 参考スコア(独自算出の注目度): 6.885740709406325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, representation learning over graph networks has gained popularity, with various models showing promising results. Despite this, several challenges persist: 1) most methods are designed for static or discrete-time dynamic graphs; 2) existing continuous-time dynamic graph algorithms focus on a single evolving perspective; and 3) many continuous-time dynamic graph approaches necessitate numerous temporal neighbors to capture long-term dependencies. In response, this paper introduces the Multi-Perspective Feedback-Attention Coupling (MPFA) model. MPFA incorporates information from both evolving and raw perspectives, efficiently learning the interleaved dynamics of observed processes. The evolving perspective employs temporal self-attention to distinguish continuously evolving temporal neighbors for information aggregation. Through dynamic updates, this perspective can capture long-term dependencies using a small number of temporal neighbors. Meanwhile, the raw perspective utilizes a feedback attention module with growth characteristic coefficients to aggregate raw neighborhood information. Experimental results on a self-organizing dataset and seven public datasets validate the efficacy and competitiveness of our proposed model.
- Abstract(参考訳): 近年,グラフネットワーク上での表現学習が普及し,様々なモデルが有望な結果を示している。
それにもかかわらず、いくつかの課題が続いている。
1) ほとんどのメソッドは静的あるいは離散時間動的グラフ用に設計されている。
2) 既存の連続時間動的グラフアルゴリズムは、単一の進化的な視点に焦点をあてる。
3) 多くの連続時間動的グラフアプローチは、長期依存を捉えるために多くの時間的隣人を必要とします。
本稿では,MPFA(Multi-Perspective Feedback-Attention Coupling)モデルを提案する。
MPFAは進化と生の両方の観点から情報を取り入れ、観察されたプロセスのインターリーブされたダイナミクスを効率的に学習する。
進化する視点は、情報集約のために継続的に進化する時間的隣人を区別するために、時間的自己意識を用いる。
動的更新を通じて、この視点は少数の時間的隣人を使用して長期的な依存関係をキャプチャすることができる。
一方、生の視点は生の近傍情報を集約するために、成長特性係数を持つフィードバックアテンションモジュールを利用する。
自己組織型データセットと7つの公開データセットの実験結果から,提案モデルの有効性と競争性を検証した。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting [0.16492989697868887]
本稿では,相互依存を示すエッジを持つグラフにおいて,多変量信号をノードとして表現する方法を提案する。
我々はグラフニューラルネットワーク(GNN)とアテンションメカニズムを活用し、時系列データ内の基礎となる関係を効率的に学習する。
提案モデルの有効性を,長期予測タスク用に設計された実世界のベンチマークデータセットで評価した。
論文 参考訳(メタデータ) (2023-11-21T14:24:21Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
離散時間動的グラフ、すなわちDyTedのための新しいディペンタングル表現学習フレームワークを提案する。
本研究では,時間不変の表現と時間変動の表現を効果的に識別する構造的コントラスト学習とともに,時間的クリップのコントラスト学習タスクを特別に設計する。
論文 参考訳(メタデータ) (2022-10-19T14:34:12Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Learning Sparse and Continuous Graph Structures for Multivariate Time
Series Forecasting [5.359968374560132]
Learning Sparse and Continuous Graphs for Forecasting (LSCGF)は、グラフ学習と予測に結合する新しいディープラーニングモデルである。
本稿では,スムーズ・スパース・ユニット (SSU) という新しい手法を提案する。
我々のモデルは、訓練可能な小さなパラメータで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-01-24T13:35:37Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
静的および動的グラフ学習ニューラルネットワーク(GL)という新しいフレームワークを提案する。
モデルはそれぞれ、データから静的グラフ行列と動的グラフ行列を取得し、長期パターンと短期パターンをモデル化する。
ほぼすべてのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-06T08:19:15Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - Learning Temporal Dynamics from Cycles in Narrated Video [85.89096034281694]
時が経つにつれて世界がどのように変化するかをモデル化する学習問題に対する自己監督型ソリューションを提案します。
私たちのモデルは、前方および後方の時間を予測するためにモダリティに依存しない関数を学習します。
将来的な動作の予測や画像の時間的順序付けなど,様々なタスクに対して,学習されたダイナミクスモデルを適用する。
論文 参考訳(メタデータ) (2021-01-07T02:41:32Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。