On the privacy of federated Clustering: A Cryptographic View
- URL: http://arxiv.org/abs/2312.07992v1
- Date: Wed, 13 Dec 2023 09:04:14 GMT
- Title: On the privacy of federated Clustering: A Cryptographic View
- Authors: Qiongxiu Li, Lixia Luo,
- Abstract summary: Many privacy-preserving clustering algorithms leverage cryptographic techniques like homomorphic encryption or secure multiparty computation to guarantee full privacy.
This paper delves into this intricate trade-off, questioning the necessity of continuous encryption in iterative algorithms.
We show that existing lattice-based HSSP attacks fail in reconstructing the private data given the knowledge of intermediate centroids, thus it is secure to reveal them for the sake of efficiency.
- Score: 2.209921757303168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The privacy concern in federated clustering has attracted considerable attention in past decades. Many privacy-preserving clustering algorithms leverage cryptographic techniques like homomorphic encryption or secure multiparty computation, to guarantee full privacy, i.e., no additional information is leaked other than the final output. However, given the iterative nature of clustering algorithms, consistently encrypting intermediate outputs, such as centroids, hampers efficiency. This paper delves into this intricate trade-off, questioning the necessity of continuous encryption in iterative algorithms. Using the federated K-means clustering as an example, we mathematically formulate the problem of reconstructing input private data from the intermediate centroids as a classical cryptographic problem called hidden subset sum problem (HSSP)-extended from an NP-complete problem called subset sum problem (SSP). Through an in-depth analysis, we show that existing lattice-based HSSP attacks fail in reconstructing the private data given the knowledge of intermediate centroids, thus it is secure to reveal them for the sake of efficiency. To the best of our knowledge, our work is the first to cast federated clustering's privacy concerns as a cryptographic problem HSSP such that a concrete and rigorous analysis can be conducted.
Related papers
- Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy [10.396575601912673]
We introduce a federated learning algorithm called Differentially Private Federated Cubic Regularized Newton (DP-FCRN)
By leveraging second-order techniques, our algorithm achieves lower iteration complexity compared to first-order methods.
We also incorporate noise perturbation during local computations to ensure privacy.
arXiv Detail & Related papers (2024-08-08T08:48:54Z) - Privacy-preserving Continual Federated Clustering via Adaptive Resonance
Theory [11.190614418770558]
In the clustering domain, various algorithms with a federated learning framework (i.e., federated clustering) have been actively studied.
This paper proposes a privacy-preserving continual federated clustering algorithm.
Experimental results with synthetic and real-world datasets show that the proposed algorithm has superior clustering performance.
arXiv Detail & Related papers (2023-09-07T05:45:47Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
We study the space complexity of the two related fields of differential privacy and adaptive data analysis.
We show that there exists a problem P that requires exponentially more space to be solved efficiently with differential privacy.
The line of work on adaptive data analysis focuses on understanding the number of samples needed for answering a sequence of adaptive queries.
arXiv Detail & Related papers (2023-02-11T14:45:31Z) - k-Means SubClustering: A Differentially Private Algorithm with Improved
Clustering Quality [0.0]
Many differentially private iterative algorithms have been proposed in interactive settings to protect an individual's privacy from inference attacks.
In this work, we extend the previous work on 'Differentially Private k-Means Clustering With Convergence Guarantee' by taking it as our baseline.
The novelty of our approach is to sub-cluster the clusters and then select the centroid which has a higher probability of moving in the direction of the future centroid.
arXiv Detail & Related papers (2023-01-07T17:07:12Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - Determinantal consensus clustering [77.34726150561087]
We propose the use of determinantal point processes or DPP for the random restart of clustering algorithms.
DPPs favor diversity of the center points within subsets.
We show through simulations that, contrary to DPP, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets.
arXiv Detail & Related papers (2021-02-07T23:48:24Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - Secure Sum Outperforms Homomorphic Encryption in (Current) Collaborative
Deep Learning [7.690774882108066]
We discuss methods for training neural networks on the joint data of different data owners, that keep each party's input confidential.
We show that a less complex and computationally less expensive secure sum protocol exhibits superior properties in terms of both collusion-resistance and runtime.
arXiv Detail & Related papers (2020-06-02T23:03:32Z) - Differentially Private k-Means Clustering with Guaranteed Convergence [5.335316436366718]
Iterative clustering algorithms help us to learn the insights behind the data.
It may allow adversaries to infer the privacy of individuals with some background knowledge.
To protect individual privacy against such an inference attack, preserving differential privacy (DP) for the iterative clustering algorithms has been extensively studied.
arXiv Detail & Related papers (2020-02-03T22:53:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.