Differential Privacy Preserving Quantum Computing via Projection Operator Measurements
- URL: http://arxiv.org/abs/2312.08210v2
- Date: Tue, 9 Apr 2024 16:52:11 GMT
- Title: Differential Privacy Preserving Quantum Computing via Projection Operator Measurements
- Authors: Yuqing Li, Yusheng Zhao, Xinyue Zhang, Hui Zhong, Miao Pan, Chi Zhang,
- Abstract summary: In classical computing, we can incorporate the concept of differential privacy (DP) to meet the standard of privacy preservation.
In the quantum computing scenario, researchers have extended classic DP to quantum differential privacy (QDP) by considering the quantum noise.
We show that shot noise can effectively provide privacy protection in quantum computing.
- Score: 15.024190374248088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has been widely applied in various fields, such as quantum physics simulations, quantum machine learning, and big data analysis. However, in the domains of data-driven paradigm, how to ensure the privacy of the database is becoming a vital problem. For classical computing, we can incorporate the concept of differential privacy (DP) to meet the standard of privacy preservation by manually adding the noise. In the quantum computing scenario, researchers have extended classic DP to quantum differential privacy (QDP) by considering the quantum noise. In this paper, we propose a novel approach to satisfy the QDP definition by considering the errors generated by the projection operator measurement, which is denoted as shot noises. Then, we discuss the amount of privacy budget that can be achieved with shot noises, which serves as a metric for the level of privacy protection. Furthermore, we provide the QDP of shot noise in quantum circuits with depolarizing noise. Through numerical simulations, we show that shot noise can effectively provide privacy protection in quantum computing.
Related papers
- Bridging Quantum Computing and Differential Privacy: Insights into Quantum Computing Privacy [15.024190374248088]
Differential privacy (DP) has been extended to the quantum domain, i.e., quantum differential privacy (QDP)
QDP may become one of the most promising approaches toward privacy-preserving quantum computing.
This paper provides an overview of the various implementations of QDP and their performance in terms of privacy parameters under the DP setting.
arXiv Detail & Related papers (2024-03-14T08:40:30Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Tuning Quantum Computing Privacy through Quantum Error Correction [12.475140331375666]
We propose to leverage quantum error correction techniques to reduce quantum computing errors.
We show that QEC is a feasible way to regulate the degree of privacy protection in quantum computing.
arXiv Detail & Related papers (2023-12-22T08:35:23Z) - Harnessing Inherent Noises for Privacy Preservation in Quantum Machine
Learning [11.45148186874482]
We propose to harness inherent quantum noises to protect data privacy in quantum machine learning.
Especially, considering the Noisy Intermediate-Scale Quantum (NISQ) devices, we leverage the unavoidable shot noise and incoherent noise.
arXiv Detail & Related papers (2023-12-18T11:52:44Z) - A unifying framework for differentially private quantum algorithms [0.0]
We propose a novel and general definition of neighbouring quantum states.
We demonstrate that this definition captures the underlying structure of quantum encodings.
We also investigate an alternative setting where we are provided with multiple copies of the input state.
arXiv Detail & Related papers (2023-07-10T17:44:03Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
We show that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks.
We derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples.
arXiv Detail & Related papers (2022-11-02T05:17:04Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Differential Privacy Amplification in Quantum and Quantum-inspired
Algorithms [0.6827423171182154]
We provide privacy bounds amplification for quantum and quantum-inspired algorithms.
We show for the first time, that algorithms running on quantum encoding of a classical dataset amplify differential privacy.
arXiv Detail & Related papers (2022-03-07T18:55:20Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.