Tuning Quantum Computing Privacy through Quantum Error Correction
- URL: http://arxiv.org/abs/2312.14521v1
- Date: Fri, 22 Dec 2023 08:35:23 GMT
- Title: Tuning Quantum Computing Privacy through Quantum Error Correction
- Authors: Hui Zhong, Keyi Ju, Manojna Sistla, Xinyue Zhang, Xiaoqi Qin, Xin Fu,
Miao Pan
- Abstract summary: We propose to leverage quantum error correction techniques to reduce quantum computing errors.
We show that QEC is a feasible way to regulate the degree of privacy protection in quantum computing.
- Score: 12.475140331375666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is a promising paradigm for efficiently solving large and
high-complexity problems. To protect quantum computing privacy, pioneering
research efforts proposed to redefine differential privacy (DP) in quantum
computing, i.e., quantum differential privacy (QDP), and harvest inherent
noises generated by quantum computing to implement QDP. However, such an
implementation approach is limited by the amount of inherent noises, which
makes the privacy budget of the QDP mechanism fixed and uncontrollable. To
address this issue, in this paper, we propose to leverage quantum error
correction (QEC) techniques to reduce quantum computing errors, while tuning
the privacy protection levels in QDP. In short, we gradually decrease the
quantum noise error rate by deciding whether to apply QEC operations on the
gate in a multiple single qubit gates circuit. We have derived a new
calculation formula for the general error rate and corresponding privacy
budgets after QEC operation. Then, we expand to achieve further noise reduction
using multi-level concatenated QEC operation. Through extensive numerical
simulations, we demonstrate that QEC is a feasible way to regulate the degree
of privacy protection in quantum computing.
Related papers
- Bridging Quantum Computing and Differential Privacy: Insights into Quantum Computing Privacy [15.024190374248088]
Differential privacy (DP) has been extended to the quantum domain, i.e., quantum differential privacy (QDP)
QDP may become one of the most promising approaches toward privacy-preserving quantum computing.
This paper provides an overview of the various implementations of QDP and their performance in terms of privacy parameters under the DP setting.
arXiv Detail & Related papers (2024-03-14T08:40:30Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Harnessing Inherent Noises for Privacy Preservation in Quantum Machine
Learning [11.45148186874482]
We propose to harness inherent quantum noises to protect data privacy in quantum machine learning.
Especially, considering the Noisy Intermediate-Scale Quantum (NISQ) devices, we leverage the unavoidable shot noise and incoherent noise.
arXiv Detail & Related papers (2023-12-18T11:52:44Z) - Differential Privacy Preserving Quantum Computing via Projection Operator Measurements [15.024190374248088]
In classical computing, we can incorporate the concept of differential privacy (DP) to meet the standard of privacy preservation.
In the quantum computing scenario, researchers have extended classic DP to quantum differential privacy (QDP) by considering the quantum noise.
We show that shot noise can effectively provide privacy protection in quantum computing.
arXiv Detail & Related papers (2023-12-13T15:27:26Z) - Blind quantum machine learning with quantum bipartite correlator [13.533591812956018]
We introduce novel blind quantum machine learning protocols based on the quantum bipartite correlator algorithm.
Our protocols have reduced communication overhead while preserving the privacy of data from untrusted parties.
arXiv Detail & Related papers (2023-10-19T16:42:32Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.