GLOP: Learning Global Partition and Local Construction for Solving Large-scale Routing Problems in Real-time
- URL: http://arxiv.org/abs/2312.08224v2
- Date: Sun, 21 Jul 2024 10:18:30 GMT
- Title: GLOP: Learning Global Partition and Local Construction for Solving Large-scale Routing Problems in Real-time
- Authors: Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, Fanzhang Li,
- Abstract summary: GLOP is a unified hierarchical framework that efficiently scales toward large-scale routing problems.
For the first time, we hybridize non-autoregressive neurals for coarse-grained problem partitions and autoregressive neurals for fine-grained route constructions.
Experiments show that GLOP achieves competitive and state-of-the-art real-time performance on large-scale routing problems.
- Score: 17.450373393248984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent end-to-end neural solvers have shown promise for small-scale routing problems but suffered from limited real-time scaling-up performance. This paper proposes GLOP (Global and Local Optimization Policies), a unified hierarchical framework that efficiently scales toward large-scale routing problems. GLOP partitions large routing problems into Travelling Salesman Problems (TSPs) and TSPs into Shortest Hamiltonian Path Problems. For the first time, we hybridize non-autoregressive neural heuristics for coarse-grained problem partitions and autoregressive neural heuristics for fine-grained route constructions, leveraging the scalability of the former and the meticulousness of the latter. Experimental results show that GLOP achieves competitive and state-of-the-art real-time performance on large-scale routing problems, including TSP, ATSP, CVRP, and PCTSP.
Related papers
- Destroy and Repair Using Hyper Graphs for Routing [14.391263435675587]
We introduce a Destroy-and-Repair framework based on Hyper-Graphs.
This framework reduces consecutive intact edges to hyper-edges, allowing the model to pay more attention to the destroyed part and decrease the complexity of encoding all nodes.
arXiv Detail & Related papers (2025-02-22T10:04:58Z) - LocalEscaper: A Weakly-supervised Framework with Regional Reconstruction for Scalable Neural TSP Solvers [14.238953745477193]
LocalEscaper is a weakly-supervised learning framework for large-scale Traveling Salesman Problem (TSP)
It effectively combines the advantages of both SL and RL, enabling effective training on datasets with low-quality labels.
It sets a new benchmark for scalability and efficiency, solving TSP instances with up to 50,000 cities.
arXiv Detail & Related papers (2025-02-18T03:10:27Z) - A GREAT Architecture for Edge-Based Graph Problems Like TSP [8.922883855120416]
Graph neural networks (GNNs) are not well suited to operate on dense graphs, such as in routing problems.
We propose a novel GNN-related edge-based neural model called Graph Edge Attention Network (GREAT)
We show GREAT can produce sparse graphs while keeping most of the optimal edges.
arXiv Detail & Related papers (2024-08-29T17:07:43Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve Combinatorial optimization (CO) problems.
It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation.
Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventionals.
arXiv Detail & Related papers (2024-07-23T13:34:35Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
We propose a decompose-route-improve (DRI) framework that groups customers using clustering.
Its similarity metric incorporates customers' spatial, temporal, and demand data.
We apply pruned local search (LS) between solved subproblems to improve the overall solution.
arXiv Detail & Related papers (2024-01-20T06:06:01Z) - Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems [20.684353068460375]
When vehicle routing decisions are intertwined with higher-level decisions, the resulting optimization problems pose significant challenges for computation.
We propose a novel deep-learning-based approach called Genetic Algorithm with Neural Cost Predictor (GANCP) to tackle the challenge.
In particular, our proposed neural network learns the objective values of the HGS-CVRP open-source package that solves capacitated vehicle routing problems.
arXiv Detail & Related papers (2023-10-22T02:46:37Z) - Towards Generalizable Neural Solvers for Vehicle Routing Problems via Ensemble with Transferrable Local Policy [24.91781032046481]
Many neural construction methods for Vehicle Routing Problems(VRPs) focus on synthetic problem instances with specified node distributions and limited scales.
We design an auxiliary policy that learns from the local transferable topological features, named local policy, and integrate it with a typical construction policy to form an ensemble policy.
With joint training, the aggregated policies perform cooperatively and complementarily to boost generalization.
arXiv Detail & Related papers (2023-08-27T13:22:50Z) - Pointerformer: Deep Reinforced Multi-Pointer Transformer for the
Traveling Salesman Problem [67.32731657297377]
Traveling Salesman Problem (TSP) is a classic routing optimization problem originally arising in the domain of transportation and logistics.
Recently, Deep Reinforcement Learning has been increasingly employed to solve TSP due to its high inference efficiency.
We propose a novel end-to-end DRL approach, referred to as Pointerformer, based on multi-pointer Transformer.
arXiv Detail & Related papers (2023-04-19T03:48:32Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
Physics-informed neural networks (PINNs) incorporate physical knowledge from the problem domain as a soft constraint on the loss function.
We study the impact of the location of the collocation points on the trainability of these models.
We propose a novel adaptive collocation scheme which progressively allocates more collocation points to areas where the model is making higher errors.
arXiv Detail & Related papers (2022-07-08T18:17:06Z) - Learning to Solve Combinatorial Graph Partitioning Problems via
Efficient Exploration [72.15369769265398]
Experimentally, ECORD achieves a new SOTA for RL algorithms on the Maximum Cut problem.
Compared to the nearest competitor, ECORD reduces the optimality gap by up to 73%.
arXiv Detail & Related papers (2022-05-27T17:13:10Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.