Towards Generalizable Neural Solvers for Vehicle Routing Problems via Ensemble with Transferrable Local Policy
- URL: http://arxiv.org/abs/2308.14104v3
- Date: Sun, 5 May 2024 13:55:07 GMT
- Title: Towards Generalizable Neural Solvers for Vehicle Routing Problems via Ensemble with Transferrable Local Policy
- Authors: Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, Chao Qian,
- Abstract summary: Many neural construction methods for Vehicle Routing Problems(VRPs) focus on synthetic problem instances with specified node distributions and limited scales.
We design an auxiliary policy that learns from the local transferable topological features, named local policy, and integrate it with a typical construction policy to form an ensemble policy.
With joint training, the aggregated policies perform cooperatively and complementarily to boost generalization.
- Score: 24.91781032046481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has been adapted to help solve NP-hard combinatorial optimization problems. One prevalent way is learning to construct solutions by deep neural networks, which has been receiving more and more attention due to the high efficiency and less requirement for expert knowledge. However, many neural construction methods for Vehicle Routing Problems~(VRPs) focus on synthetic problem instances with specified node distributions and limited scales, leading to poor performance on real-world problems which usually involve complex and unknown node distributions together with large scales. To make neural VRP solvers more practical, we design an auxiliary policy that learns from the local transferable topological features, named local policy, and integrate it with a typical construction policy (which learns from the global information of VRP instances) to form an ensemble policy. With joint training, the aggregated policies perform cooperatively and complementarily to boost generalization. The experimental results on two well-known benchmarks, TSPLIB and CVRPLIB, of travelling salesman problem and capacitated VRP show that the ensemble policy significantly improves both cross-distribution and cross-scale generalization performance, and even performs well on real-world problems with several thousand nodes.
Related papers
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization [18.298695520665348]
Vehicle routing problems (VRPs) can be found in numerous real-world applications.
In this work, we make the first attempt to tackle the crucial challenge of cross-problem generalization.
Our proposed model can successfully solve VRPs with unseen attribute combinations in a zero-shot generalization manner.
arXiv Detail & Related papers (2024-02-23T13:25:23Z) - Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems [20.684353068460375]
When vehicle routing decisions are intertwined with higher-level decisions, the resulting optimization problems pose significant challenges for computation.
We propose a novel deep-learning-based approach called Genetic Algorithm with Neural Cost Predictor (GANCP) to tackle the challenge.
In particular, our proposed neural network learns the objective values of the HGS-CVRP open-source package that solves capacitated vehicle routing problems.
arXiv Detail & Related papers (2023-10-22T02:46:37Z) - Learning Collaborative Policies to Solve NP-hard Routing Problems [13.13675711285772]
This paper proposes a novel hierarchical problem-solving strategy called learning collaborative policies (LCP)
It can effectively find the near-optimum solution using two iterative DRL policies: the seeder and reviser.
Extensive experiments demonstrate that the proposed two-policies collaboration scheme improves over single-policy DRL framework on various NP-hard routing problems.
arXiv Detail & Related papers (2021-10-26T19:46:21Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - Dimension-Free Rates for Natural Policy Gradient in Multi-Agent
Reinforcement Learning [22.310861786709538]
We propose a scalable algorithm for cooperative multi-agent reinforcement learning.
We show that our algorithm converges to the globally optimal policy with a dimension-free statistical and computational complexity.
arXiv Detail & Related papers (2021-09-23T23:38:15Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.