Kunyu: A High-Performing Global Weather Model Beyond Regression Losses
- URL: http://arxiv.org/abs/2312.08264v1
- Date: Mon, 4 Dec 2023 17:30:41 GMT
- Title: Kunyu: A High-Performing Global Weather Model Beyond Regression Losses
- Authors: Zekun Ni
- Abstract summary: I present Kunyu, a global data-driven weather forecasting model which delivers accurate predictions across a comprehensive array of atmospheric variables at 0.35deg resolution.
With both regression and adversarial losses integrated in its training framework, Kunyu generates forecasts with enhanced clarity and realism.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past year, data-driven global weather forecasting has emerged as a
new alternative to traditional numerical weather prediction. This innovative
approach yields forecasts of comparable accuracy at a tiny fraction of
computational costs. Regrettably, as far as I know, existing models exclusively
rely on regression losses, producing forecasts with substantial blurring. Such
blurring, although compromises practicality, enjoys an unfair advantage on
evaluation metrics. In this paper, I present Kunyu, a global data-driven
weather forecasting model which delivers accurate predictions across a
comprehensive array of atmospheric variables at 0.35{\deg} resolution. With
both regression and adversarial losses integrated in its training framework,
Kunyu generates forecasts with enhanced clarity and realism. Its performance
outpaces even ECMWF HRES in some aspects such as the estimation of anomaly
extremes, while remaining competitive with ECMWF HRES on evaluation metrics
such as RMSE and ACC. Kunyu is an important step forward in closing the utility
gap between numerical and data-driven weather prediction.
Related papers
- HR-Extreme: A High-Resolution Dataset for Extreme Weather Forecasting [12.561873438789242]
This study introduces a comprehensive dataset that incorporates high-resolution extreme weather cases.
We evaluate the current state-of-the-art deep learning models and Numerical Weather Prediction (NWP) systems on HR-Extreme.
arXiv Detail & Related papers (2024-09-27T16:20:51Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - EWMoE: An effective model for global weather forecasting with mixture-of-experts [6.695845790670147]
We propose EWMoE, an effective model for accurate global weather forecasting, which requires significantly less training data and computational resources.
Our model incorporates three key components to enhance prediction accuracy: 3D absolute position embedding, a core Mixture-of-Experts layer, and two specific loss functions.
arXiv Detail & Related papers (2024-05-09T16:42:13Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.