論文の概要: Personalized Decision Supports based on Theory of Mind Modeling and
Explainable Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2312.08397v1
- Date: Wed, 13 Dec 2023 00:37:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-16 03:09:07.038401
- Title: Personalized Decision Supports based on Theory of Mind Modeling and
Explainable Reinforcement Learning
- Title(参考訳): 心のモデリング理論と説明可能な強化学習に基づくパーソナライズド意思決定支援
- Authors: Huao Li, Yao Fan, Keyang Zheng, Michael Lewis, Katia Sycara
- Abstract要約: 我々は、心の理論(ToM)モデリングと説明可能な強化学習(XRL)を組み合わせた、パーソナライズされた意思決定支援システムを提案する。
提案システムは,エンドユーザが容易に解釈可能な,正確でパーソナライズされた介入を生成する。
- 参考スコア(独自算出の注目度): 0.9071985476473737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel personalized decision support system that
combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning
(XRL) to provide effective and interpretable interventions. Our method
leverages DRL to provide expert action recommendations while incorporating ToM
modeling to understand users' mental states and predict their future actions,
enabling appropriate timing for intervention. To explain interventions, we use
counterfactual explanations based on RL's feature importance and users' ToM
model structure. Our proposed system generates accurate and personalized
interventions that are easily interpretable by end-users. We demonstrate the
effectiveness of our approach through a series of crowd-sourcing experiments in
a simulated team decision-making task, where our system outperforms control
baselines in terms of task performance. Our proposed approach is agnostic to
task environment and RL model structure, therefore has the potential to be
generalized to a wide range of applications.
- Abstract(参考訳): 本稿では,心の理論(tom)モデルと説明可能強化学習(xrl)を組み合わせて,効果的かつ解釈可能な介入を提供するパーソナライズド意思決定支援システムを提案する。
本手法はDRLを活用し,ToMモデリングを応用してユーザの精神状態を理解し,今後の行動を予測し,介入の適切なタイミングを可能にする。
介入を説明するために,RLの特徴的重要性とユーザによるToMモデル構造に基づく実例説明を用いる。
提案システムは,エンドユーザが容易に解釈可能な,正確でパーソナライズされた介入を生成する。
シミュレーションしたチーム意思決定タスクにおけるクラウドソーシング実験を通じて,本手法の有効性を実証する。
提案手法はタスク環境やrlモデル構造に依存せず,幅広いアプリケーションに適用できる可能性を持っている。
関連論文リスト
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
モノグラフは、平均報酬決定過程(MDPs)の文脈内で制約された様々なモデルベースおよびモデルフリーアプローチの探索に焦点を当てている
このアルゴリズムは制約付きMDPの解法として検討されている。
論文 参考訳(メタデータ) (2024-06-17T12:46:02Z) - Spatio-temporal Value Semantics-based Abstraction for Dense Deep Reinforcement Learning [1.4542411354617986]
Intelligent Cyber-Physical Systems (ICPS)は、CPS(Cyber-Physical System)の特殊な形態を表す。
CNNとDeep Reinforcement Learning (DRL)は、知覚、意思決定、制御を含む多面的なタスクを実行する。
DRLは意思決定プロセスにおける効率性、一般化能力、データの不足という観点で、課題に直面している。
本研究では空間時間値意味論に基づく革新的な抽象的モデリング手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T02:21:10Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、高レベルの概念セットを使用して予測を構築し、説明することによって、ニューラルネットワークの不透明さに対処する。
近年の研究では、介入効果は概念が介入される順序に大きく依存していることが示されている。
IntCEM(Intervention-Aware Concept Embedding Model)は,テスト時間介入に対するモデルの受容性を改善する新しいCBMアーキテクチャとトレーニングパラダイムである。
論文 参考訳(メタデータ) (2023-09-29T02:04:24Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
モデルベース強化学習(RL)のための修正目的を提案する。
相互情報に基づく状態空間モデルに,変分エンパワーメントにインスパイアされた用語を統合する。
本研究は,視覚に基づくロボット制御作業における自然な映像背景を用いたアプローチの評価である。
論文 参考訳(メタデータ) (2022-04-18T23:09:23Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Deliberative Acting, Online Planning and Learning with Hierarchical
Operational Models [5.597986898418404]
AI研究では、アクションの計画は通常、アクションの結果として起こる可能性のあることを抽象的に特定するアクションの記述モデルを使用してきた。
計画されたアクションの実行には、リッチな計算制御構造とクローズドループオンライン意思決定を使用する運用モデルが必要である。
我々は、計画と行動の両方が同じ運用モデルを使用する統合された行動計画システムを実装している。
論文 参考訳(メタデータ) (2020-10-02T14:50:05Z) - DECE: Decision Explorer with Counterfactual Explanations for Machine
Learning Models [36.50754934147469]
我々は,機械学習モデルの振る舞いを理解し,探索するために,反実的説明の可能性を利用する。
我々は、個別のインスタンスとデータサブセットに関するモデルの判断を理解し、調査するのに役立つインタラクティブな可視化システムであるDECEを設計する。
論文 参考訳(メタデータ) (2020-08-19T09:44:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。