Personalized Decision Supports based on Theory of Mind Modeling and
Explainable Reinforcement Learning
- URL: http://arxiv.org/abs/2312.08397v1
- Date: Wed, 13 Dec 2023 00:37:17 GMT
- Title: Personalized Decision Supports based on Theory of Mind Modeling and
Explainable Reinforcement Learning
- Authors: Huao Li, Yao Fan, Keyang Zheng, Michael Lewis, Katia Sycara
- Abstract summary: We propose a novel personalized decision support system that combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning (XRL)
Our proposed system generates accurate and personalized interventions that are easily interpretable by end-users.
- Score: 0.9071985476473737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel personalized decision support system that
combines Theory of Mind (ToM) modeling and explainable Reinforcement Learning
(XRL) to provide effective and interpretable interventions. Our method
leverages DRL to provide expert action recommendations while incorporating ToM
modeling to understand users' mental states and predict their future actions,
enabling appropriate timing for intervention. To explain interventions, we use
counterfactual explanations based on RL's feature importance and users' ToM
model structure. Our proposed system generates accurate and personalized
interventions that are easily interpretable by end-users. We demonstrate the
effectiveness of our approach through a series of crowd-sourcing experiments in
a simulated team decision-making task, where our system outperforms control
baselines in terms of task performance. Our proposed approach is agnostic to
task environment and RL model structure, therefore has the potential to be
generalized to a wide range of applications.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
monograph focuses on the exploration of various model-based and model-free approaches for Constrained within the context of average reward Markov Decision Processes (MDPs)
The primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs.
arXiv Detail & Related papers (2024-06-17T12:46:02Z) - Spatio-temporal Value Semantics-based Abstraction for Dense Deep Reinforcement Learning [1.4542411354617986]
Intelligent Cyber-Physical Systems (ICPS) represent a specialized form of Cyber-Physical System (CPS)
CNNs and Deep Reinforcement Learning (DRL) undertake multifaceted tasks encompassing perception, decision-making, and control.
DRL confronts challenges in terms of efficiency, generalization capabilities, and data scarcity during decision-making process.
We propose an innovative abstract modeling approach grounded in spatial-temporal value semantics.
arXiv Detail & Related papers (2024-05-24T02:21:10Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
We propose an algorithmic framework that fine-tunes vision-language models (VLMs) with reinforcement learning (RL)
Our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning.
We demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks.
arXiv Detail & Related papers (2024-05-16T17:50:19Z) - Learning to Receive Help: Intervention-Aware Concept Embedding Models [44.1307928713715]
Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by constructing and explaining their predictions using a set of high-level concepts.
Recent work has shown that intervention efficacy can be highly dependent on the order in which concepts are intervened.
We propose Intervention-aware Concept Embedding models (IntCEMs), a novel CBM-based architecture and training paradigm that improves a model's receptiveness to test-time interventions.
arXiv Detail & Related papers (2023-09-29T02:04:24Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Deliberative Acting, Online Planning and Learning with Hierarchical
Operational Models [5.597986898418404]
In AI research, a plan of action has typically used descriptive models of the actions that abstractly specify what might happen as a result of an action.
executing the planned actions has needed operational models, in which rich computational control structures and closed-loop online decision-making are used.
We implement an integrated acting and planning system in which both planning and acting use the same operational models.
arXiv Detail & Related papers (2020-10-02T14:50:05Z) - DECE: Decision Explorer with Counterfactual Explanations for Machine
Learning Models [36.50754934147469]
We exploit the potential of counterfactual explanations to understand and explore the behavior of machine learning models.
We design DECE, an interactive visualization system that helps understand and explore a model's decisions on individual instances and data subsets.
arXiv Detail & Related papers (2020-08-19T09:44:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.