Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making
- URL: http://arxiv.org/abs/2408.09176v1
- Date: Sat, 17 Aug 2024 11:49:53 GMT
- Title: Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making
- Authors: Siyu Wu, Alessandro Oltramari, Jonathan Francis, C. Lee Giles, Frank E. Ritter,
- Abstract summary: LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
- Score: 51.737762570776006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resolving the dichotomy between the human-like yet constrained reasoning processes of Cognitive Architectures and the broad but often noisy inference behavior of Large Language Models (LLMs) remains a challenging but exciting pursuit, for enabling reliable machine reasoning capabilities in production systems. Because Cognitive Architectures are famously developed for the purpose of modeling the internal mechanisms of human cognitive decision-making at a computational level, new investigations consider the goal of informing LLMs with the knowledge necessary for replicating such processes, e.g., guided perception, memory, goal-setting, and action. Previous approaches that use LLMs for grounded decision-making struggle with complex reasoning tasks that require slower, deliberate cognition over fast and intuitive inference -- reporting issues related to the lack of sufficient grounding, as in hallucination. To resolve these challenges, we introduce LLM-ACTR, a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making by integrating the ACT-R Cognitive Architecture with LLMs. Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations, injects this information into trainable LLM adapter layers, and fine-tunes the LLMs for downstream prediction. Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability of our approach, compared to LLM-only baselines that leverage chain-of-thought reasoning strategies.
Related papers
- BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
We propose cognitive prompting as a novel approach to guide problem-solving in large language models.
We evaluate the effectiveness of cognitive prompting on Meta's LLaMA models.
arXiv Detail & Related papers (2024-10-03T19:53:47Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [35.43513487137371]
Large Language Models (LLMs) have achieved substantial progress in artificial intelligence, particularly in reasoning tasks.
We propose the Deductive and InDuctive(DID) method, which enhances LLM reasoning by dynamically integrating both deductive and inductive reasoning.
Our findings suggest that DID provides a more robust and cognitively aligned framework for reasoning in LLMs.
arXiv Detail & Related papers (2024-10-03T18:30:47Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
Large Language Models (LLMs) have demonstrated their capabilities across various tasks.
This paper exploits the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks.
We compare the performance of LLMs with a cognitive instance-based learning model, which imitates human experiential decision-making.
arXiv Detail & Related papers (2024-07-12T14:13:06Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
High-stakes decision-making tasks in fields such as medical, legal and finance require a level of precision, comprehensiveness, and logical consistency.
We have developed a neuro-symbolic AI platform to tackle these problems.
The platform integrates fine-tuned LLMs for knowledge extraction and alignment with a robust symbolic reasoning engine.
arXiv Detail & Related papers (2024-06-26T00:00:45Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
Agent-based models (ABMs) stand as an essential paradigm for proposing and validating hypothetical solutions or policies.
Large language models (LLMs) encapsulating cross-domain knowledge and programming proficiency could potentially alleviate the difficulty of this process.
We present SAGE, a general solution-oriented ABM generation framework designed for automatic modeling and generating solutions for targeted problems.
arXiv Detail & Related papers (2024-02-04T07:59:06Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.