論文の概要: Cooperative Learning for Cost-Adaptive Inference
- arxiv url: http://arxiv.org/abs/2312.08532v2
- Date: Tue, 26 Dec 2023 20:26:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 21:23:05.118443
- Title: Cooperative Learning for Cost-Adaptive Inference
- Title(参考訳): コスト適応推論のための協調学習
- Authors: Xingli Fang, Richard Bradford, Jung-Eun Kim
- Abstract要約: 提案されたフレームワークは、特定のアーキテクチャに縛られないが、既存のモデル/アーキテクチャを組み込むことができる。
モデルのサイズが多様である間、フルネットワークに匹敵する精度を提供する。
- 参考スコア(独自算出の注目度): 3.301728339780329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a cooperative training framework for deep neural network
architectures that enables the runtime network depths to change to satisfy
dynamic computing resource requirements. In our framework, the number of layers
participating in computation can be chosen dynamically to meet performance-cost
trade-offs at inference runtime. Our method trains two Teammate nets and a
Leader net, and two sets of Teammate sub-networks with various depths through
knowledge distillation. The Teammate nets derive sub-networks and transfer
knowledge to them, and to each other, while the Leader net guides Teammate nets
to ensure accuracy. The approach trains the framework atomically at once
instead of individually training various sizes of models; in a sense, the
various-sized networks are all trained at once, in a "package deal." The
proposed framework is not tied to any specific architecture but can incorporate
any existing models/architectures, therefore it can maintain stable results and
is insensitive to the size of a dataset's feature map. Compared with other
related approaches, it provides comparable accuracy to its full network while
various sizes of models are available.
- Abstract(参考訳): 本稿では,動的コンピューティングリソースの要求を満たすために,ランタイムネットワークの深度を変更可能なディープニューラルネットワークアーキテクチャのための協調トレーニングフレームワークを提案する。
我々のフレームワークでは、推論実行時にパフォーマンスコストのトレードオフを満たすために、計算に参加するレイヤの数を動的に選択できる。
提案手法は,2つのチームメイトネットと1つのリーダーネット,および2組のチームメイトサブネットワークを知識蒸留により様々な深度で訓練する。
チームメイトネットはサブネットワークを導き、知識を互いに伝達し、リーダーネットはチームメイトネットをガイドし、正確性を確保する。
このアプローチは、モデルのさまざまなサイズを個別にトレーニングする代わりに、フレームワークを一度に原子的にトレーニングする。
提案されたフレームワークは、特定のアーキテクチャに縛られないが、既存のモデル/アーキテクチャを組み込めるため、安定した結果を維持することができ、データセットの機能マップのサイズに敏感である。
他の関連するアプローチと比較して、モデルのさまざまなサイズが利用可能である間、フルネットワークに匹敵する精度を提供する。
関連論文リスト
- OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
once-for-All(OFA)は、異なるリソース制約を持つデバイスのための効率的なアーキテクチャを探索する問題に対処するために設計された、ニューラルネットワーク検索(NAS)フレームワークである。
我々は,探索段階を多目的最適化問題として明示的に考えることにより,効率の追求を一歩進めることを目指している。
論文 参考訳(メタデータ) (2023-03-23T21:30:29Z) - Supernet Training for Federated Image Classification under System
Heterogeneity [15.2292571922932]
本研究では,2つのシナリオ,すなわちフェデレーション・オブ・スーパーネット・トレーニング(FedSup)を考えるための新しい枠組みを提案する。
フェデレートラーニング(FL)のモデルアグリゲーション段階でのパラメータの平均化は、スーパーネットトレーニングにおけるウェイトシェアリングとどのように似ているかに着想を得ている。
本フレームワークでは,通信コストの削減とトレーニングオーバーヘッドの低減のために,放送段階のクライアントにサブモデルを送信することで,効率的なアルゴリズム(E-FedSup)を提案する。
論文 参考訳(メタデータ) (2022-06-03T02:21:01Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Distributed Learning for Time-varying Networks: A Scalable Design [13.657740129012804]
本稿では,スケーラブルなディープニューラルネットワーク(DNN)設計に基づく分散学習フレームワークを提案する。
学習タスクの置換等価性と不変性を利用することで、異なるスケールのクライアントに対して異なるスケールのDNNを構築することができる。
モデルアグリゲーションはこれらの2つのサブマトリクスに基づいて行うことができ、学習の収束と性能を改善することができる。
論文 参考訳(メタデータ) (2021-07-31T12:44:28Z) - Differentiable Architecture Pruning for Transfer Learning [6.935731409563879]
本研究では,与えられた大規模モデルからサブアーキテクチャを抽出するための勾配に基づくアプローチを提案する。
我々のアーキテクチャ・プルーニング・スキームは、異なるタスクを解くために再訓練を成功させることができるトランスファー可能な新しい構造を生成する。
理論的収束保証を提供し、実データ上で提案した伝達学習戦略を検証する。
論文 参考訳(メタデータ) (2021-07-07T17:44:59Z) - MutualNet: Adaptive ConvNet via Mutual Learning from Different Model
Configurations [51.85020143716815]
MutualNetは、リソース制約の多様なセットで実行できる単一のネットワークを訓練するために提案します。
提案手法は,様々なネットワーク幅と入力解像度を持つモデル構成のコホートを訓練する。
MutualNetは、さまざまなネットワーク構造に適用できる一般的なトレーニング方法論です。
論文 参考訳(メタデータ) (2021-05-14T22:30:13Z) - Embedded Knowledge Distillation in Depth-level Dynamic Neural Network [8.207403859762044]
類似アーキテクチャの異なる深層サブネットを統合した、エレガントな深層ダイナミックニューラルネットワーク(DDNN)を提案する。
本稿では、DDNNが教師(フル)ネットから複数のサブネットへの意味的知識伝達を実装するためのEKD(Embedded-Knowledge-Distillation)トレーニング機構を設計する。
CIFAR-10、CIFAR-100、ImageNetデータセットの実験では、EKDトレーニングを備えたDDNNのサブネットは、深さレベルの切断または個別トレーニングよりも優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-03-01T06:35:31Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。