World Models via Policy-Guided Trajectory Diffusion
- URL: http://arxiv.org/abs/2312.08533v4
- Date: Wed, 27 Mar 2024 09:11:48 GMT
- Title: World Models via Policy-Guided Trajectory Diffusion
- Authors: Marc Rigter, Jun Yamada, Ingmar Posner,
- Abstract summary: Existing world models are autoregressive in that they interleave predicting the next state with sampling the next action from the policy.
We propose a novel world modelling approach that is not autoregressive and generates entire on-policy trajectories in a single pass through a diffusion model.
- Score: 21.89154719069519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: World models are a powerful tool for developing intelligent agents. By predicting the outcome of a sequence of actions, world models enable policies to be optimised via on-policy reinforcement learning (RL) using synthetic data, i.e. in "in imagination". Existing world models are autoregressive in that they interleave predicting the next state with sampling the next action from the policy. Prediction error inevitably compounds as the trajectory length grows. In this work, we propose a novel world modelling approach that is not autoregressive and generates entire on-policy trajectories in a single pass through a diffusion model. Our approach, Policy-Guided Trajectory Diffusion (PolyGRAD), leverages a denoising model in addition to the gradient of the action distribution of the policy to diffuse a trajectory of initially random states and actions into an on-policy synthetic trajectory. We analyse the connections between PolyGRAD, score-based generative models, and classifier-guided diffusion models. Our results demonstrate that PolyGRAD outperforms state-of-the-art baselines in terms of trajectory prediction error for short trajectories, with the exception of autoregressive diffusion. For short trajectories, PolyGRAD obtains similar errors to autoregressive diffusion, but with lower computational requirements. For long trajectories, PolyGRAD obtains comparable performance to baselines. Our experiments demonstrate that PolyGRAD enables performant policies to be trained via on-policy RL in imagination for MuJoCo continuous control domains. Thus, PolyGRAD introduces a new paradigm for accurate on-policy world modelling without autoregressive sampling.
Related papers
- Imagine-2-Drive: High-Fidelity World Modeling in CARLA for Autonomous Vehicles [9.639797094021988]
We introduce Imagine-2-Drive, a framework that consists of two components, VISTAPlan and DPA.
DPA is a diffusion based policy to model multi-modal behaviors for trajectory prediction.
We significantly outperform the state of the art (SOTA) world models on standard driving metrics by 15% and 20% on Route Completion and Success Rate respectively.
arXiv Detail & Related papers (2024-11-15T13:17:54Z) - Learning from Random Demonstrations: Offline Reinforcement Learning with Importance-Sampled Diffusion Models [19.05224410249602]
We propose a novel approach for offline reinforcement learning with closed-loop policy evaluation and world-model adaptation.
We analyzed the performance of the proposed method and provided an upper bound on the return gap between our method and the real environment under an optimal policy.
arXiv Detail & Related papers (2024-05-30T09:34:31Z) - Policy-Guided Diffusion [30.4597043728046]
In many real-world settings, agents must learn from an offline dataset gathered by some prior behavior policy.
We propose policy-guided diffusion as an alternative to autoregressive offline world models.
We show that policy-guided diffusion models a regularized form of the target distribution that balances action likelihood under both the target and behavior policies.
arXiv Detail & Related papers (2024-04-09T14:46:48Z) - Distributional Successor Features Enable Zero-Shot Policy Optimization [36.53356539916603]
This work proposes a novel class of models, i.e., Distributional Successor Features for Zero-Shot Policy Optimization (DiSPOs)
DiSPOs learn a distribution of successor features of a stationary dataset's behavior policy, along with a policy that acts to realize different successor features achievable within the dataset.
By directly modeling long-term outcomes in the dataset, DiSPOs avoid compounding error while enabling a simple scheme for zero-shot policy optimization across reward functions.
arXiv Detail & Related papers (2024-03-10T22:27:21Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration.
$textttCOPlanner$ is a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem.
arXiv Detail & Related papers (2023-10-11T06:10:07Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Policy Representation via Diffusion Probability Model for Reinforcement
Learning [67.56363353547775]
We build a theoretical foundation of policy representation via the diffusion probability model.
We present a convergence guarantee for diffusion policy, which provides a theory to understand the multimodality of diffusion policy.
We propose the DIPO which is an implementation for model-free online RL with DIffusion POlicy.
arXiv Detail & Related papers (2023-05-22T15:23:41Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy [13.819070455425075]
We learn a dynamics model that fits under the empirical state-action visitation distribution for all historical policies.
We then propose a novel dynamics model learning method, named textitPolicy-adapted Dynamics Model Learning (PDML).
Experiments on a range of continuous control environments in MuJoCo show that PDML achieves significant improvement in sample efficiency and higher performance combined with the state-of-the-art model-based RL methods.
arXiv Detail & Related papers (2022-07-25T12:45:58Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.