Object-Centric Conformance Alignments with Synchronization (Extended Version)
- URL: http://arxiv.org/abs/2312.08537v2
- Date: Thu, 4 Apr 2024 18:39:50 GMT
- Title: Object-Centric Conformance Alignments with Synchronization (Extended Version)
- Authors: Alessandro Gianola, Marco Montali, Sarah Winkler,
- Abstract summary: We present a new formalism that combines the ability of object-centric Petri nets to capture one-to-many relations and the one of Petri nets with identifiers to compare and synchronize objects based on their identity.
We propose a conformance checking approach for such nets based on an encoding in satisfiability modulo theories (SMT)
- Score: 57.76661079749309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world processes operate on objects that are inter-dependent. To accurately reflect the nature of such processes, object-centric process mining techniques are needed, notably conformance checking. However, while the object-centric perspective has recently gained traction, few concrete process mining techniques have been presented so far. Moreover, existing approaches are severely limited in their abilities to keep track of object identity and object dependencies. Consequently, serious problems in logs remain undetected. In this paper, we present a new formalism that combines the key modelling features of two existing approaches, in particular the ability of object-centric Petri nets to capture one-to-many relations and the one of Petri nets with identifiers to compare and synchronize objects based on their identity. We call the resulting formalism 'object-centric Petri nets with identifiers', and define alignments and the conformance checking task for this setting. We propose a conformance checking approach for such nets based on an encoding in satisfiability modulo theories (SMT), and illustrate how it can be effectively used to overcome shortcomings of earlier work. To assess its practicality, we perform an evaluation on data from the literature.
Related papers
- Object-Centric Multiple Object Tracking [124.30650395969126]
This paper proposes a video object-centric model for multiple-object tracking pipelines.
It consists of an index-merge module that adapts the object-centric slots into detection outputs and an object memory module.
Benefited from object-centric learning, we only require sparse detection labels for object localization and feature binding.
arXiv Detail & Related papers (2023-09-01T03:34:12Z) - Cycle Consistency Driven Object Discovery [75.60399804639403]
We introduce a method that explicitly optimize the constraint that each object in a scene should be associated with a distinct slot.
By integrating these consistency objectives into various existing slot-based object-centric methods, we showcase substantial improvements in object-discovery performance.
Our results suggest that the proposed approach not only improves object discovery, but also provides richer features for downstream tasks.
arXiv Detail & Related papers (2023-06-03T21:49:06Z) - OPerA: Object-Centric Performance Analysis [0.4014524824655105]
We propose a novel approach to performance analysis by using object-centric Petri nets as formal representations of business processes.
The proposed approach correctly computes existing performance metrics, while supporting the derivation of newly-introduced object-centric performance metrics.
We have implemented the approach as a web application and conducted a case study based on a real-life loan application process.
arXiv Detail & Related papers (2022-04-22T12:23:06Z) - Suspected Object Matters: Rethinking Model's Prediction for One-stage
Visual Grounding [93.82542533426766]
We propose a Suspected Object Transformation mechanism (SOT) to encourage the target object selection among the suspected ones.
SOT can be seamlessly integrated into existing CNN and Transformer-based one-stage visual grounders.
Extensive experiments demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2022-03-10T06:41:07Z) - Object-centric Process Predictive Analytics [0.5161531917413706]
Object-centric processes are implementations of a paradigm where an instance of one process is not executed in isolation but interacts with other instances of the same or other processes.
This paper proposes an approach to incorporate the information about the object interactions into the predictive analytics.
arXiv Detail & Related papers (2022-03-05T18:46:10Z) - Object Pursuit: Building a Space of Objects via Discriminative Weight
Generation [23.85039747700698]
We propose a framework to continuously learn object-centric representations for visual learning and understanding.
We leverage interactions to sample diverse variations of an object and the corresponding training signals while learning the object-centric representations.
We perform an extensive study of the key features of the proposed framework and analyze the characteristics of the learned representations.
arXiv Detail & Related papers (2021-12-15T08:25:30Z) - Precision and Fitness in Object-Centric Process Mining [1.14219428942199]
We introduce a notion for the precision and fitness of an object-centric Petri net with respect to an object-centric event log.
Our notions are an appropriate way to generalize quality measures to the object-centric setting.
arXiv Detail & Related papers (2021-10-06T15:49:56Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.