Joint2Human: High-quality 3D Human Generation via Compact Spherical Embedding of 3D Joints
- URL: http://arxiv.org/abs/2312.08591v2
- Date: Sat, 6 Apr 2024 16:38:38 GMT
- Title: Joint2Human: High-quality 3D Human Generation via Compact Spherical Embedding of 3D Joints
- Authors: Muxin Zhang, Qiao Feng, Zhuo Su, Chao Wen, Zhou Xue, Kun Li,
- Abstract summary: Joint2Human is a novel method that leverages 2D diffusion models to generate detailed 3D human geometry directly.
Our method can ensure global structure, local details, high resolution, and low computational cost simultaneously.
- Score: 8.704552731994452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D human generation is increasingly significant in various applications. However, the direct use of 2D generative methods in 3D generation often results in losing local details, while methods that reconstruct geometry from generated images struggle with global view consistency. In this work, we introduce Joint2Human, a novel method that leverages 2D diffusion models to generate detailed 3D human geometry directly, ensuring both global structure and local details. To achieve this, we employ the Fourier occupancy field (FOF) representation, enabling the direct generation of 3D shapes as preliminary results with 2D generative models. With the proposed high-frequency enhancer and the multi-view recarving strategy, our method can seamlessly integrate the details from different views into a uniform global shape. To better utilize the 3D human prior and enhance control over the generated geometry, we introduce a compact spherical embedding of 3D joints. This allows for an effective guidance of pose during the generation process. Additionally, our method can generate 3D humans guided by textual inputs. Our experimental results demonstrate the capability of our method to ensure global structure, local details, high resolution, and low computational cost simultaneously. More results and the code can be found on our project page at http://cic.tju.edu.cn/faculty/likun/projects/Joint2Human.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - StructLDM: Structured Latent Diffusion for 3D Human Generation [45.51684124904457]
StructLDM is a diffusion-based unconditional 3D human generative model learned from 2D images.
It enables different levels of controllable 3D human generation and editing, including pose/view/shape control, and high-level tasks including compositional generations, part-aware clothing editing, 3D virtual try-on, etc.
arXiv Detail & Related papers (2024-04-01T17:00:18Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data.
We propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously.
arXiv Detail & Related papers (2023-12-11T18:59:18Z) - Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D
priors [16.93758384693786]
Bidirectional Diffusion(BiDiff) is a unified framework that incorporates both a 3D and a 2D diffusion process.
Our model achieves high-quality, diverse, and scalable 3D generation.
arXiv Detail & Related papers (2023-12-07T10:00:04Z) - HoloFusion: Towards Photo-realistic 3D Generative Modeling [77.03830223281787]
Diffusion-based image generators can now produce high-quality and diverse samples, but their success has yet to fully translate to 3D generation.
We present HoloFusion, a method that combines the best of these approaches to produce high-fidelity, plausible, and diverse 3D samples.
arXiv Detail & Related papers (2023-08-28T01:19:33Z) - Get3DHuman: Lifting StyleGAN-Human into a 3D Generative Model using
Pixel-aligned Reconstruction Priors [56.192682114114724]
Get3DHuman is a novel 3D human framework that can significantly boost the realism and diversity of the generated outcomes.
Our key observation is that the 3D generator can profit from human-related priors learned through 2D human generators and 3D reconstructors.
arXiv Detail & Related papers (2023-02-02T15:37:46Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.