論文の概要: Graph Network Surrogate Model for Subsurface Flow Optimization
- arxiv url: http://arxiv.org/abs/2312.08625v2
- Date: Wed, 15 May 2024 03:58:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 18:02:32.009322
- Title: Graph Network Surrogate Model for Subsurface Flow Optimization
- Title(参考訳): 地下流れ最適化のためのグラフネットワークサロゲートモデル
- Authors: Haoyu Tang, Louis J. Durlofsky,
- Abstract要約: 井戸の位置と制御の最適化は、地下流れの操作の設計において重要なステップである。
本稿では,適切な配置と制御を最適化するためのグラフネットワーク代理モデル(GNSM)を提案する。
GNSMは、フローモデルを符号化-処理-復号アーキテクチャを含む計算グラフに変換する。
- 参考スコア(独自算出の注目度): 2.5782420501870296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The optimization of well locations and controls is an important step in the design of subsurface flow operations such as oil production or geological CO2 storage. These optimization problems can be computationally expensive, however, as many potential candidate solutions must be evaluated. In this study, we propose a graph network surrogate model (GNSM) for optimizing well placement and controls. The GNSM transforms the flow model into a computational graph that involves an encoding-processing-decoding architecture. Separate networks are constructed to provide global predictions for the pressure and saturation state variables. Model performance is enhanced through the inclusion of the single-phase steady-state pressure solution as a feature. A multistage multistep strategy is used for training. The trained GNSM is applied to predict flow responses in a 2D unstructured model of a channelized reservoir. Results are presented for a large set of test cases, in which five injection wells and five production wells are placed randomly throughout the model, with a random control variable (bottom-hole pressure) assigned to each well. Median relative error in pressure and saturation for 300 such test cases is 1-2%. The ability of the trained GNSM to provide accurate predictions for a new (geologically similar) permeability realization is demonstrated. Finally, the trained GNSM is used to optimize well locations and controls with a differential evolution algorithm. GNSM-based optimization results are comparable to those from simulation-based optimization, with a runtime speedup of a factor of 36. Much larger speedups are expected if the method is used for robust optimization, in which each candidate solution is evaluated on multiple geological models.
- Abstract(参考訳): 井戸の位置と制御の最適化は、石油生産や地質的なCO2貯蔵のような地下流れの操作を設計する上で重要なステップである。
しかし、これらの最適化問題は計算コストがかかる可能性があるため、多くの候補解を評価する必要がある。
本研究では,適切な配置と制御を最適化するためのグラフネットワークサロゲートモデル(GNSM)を提案する。
GNSMは、フローモデルをエンコーディング・処理・デコードアーキテクチャを含む計算グラフに変換する。
圧力および飽和状態変数に対する大域的な予測を提供するために、分離されたネットワークが構築されている。
単相定常圧解を特徴とするモデル性能が向上する。
マルチステージのマルチステップ戦略がトレーニングに使用される。
訓練されたGNSMを用いて,流路型貯水池の2次元非構造モデルにおける流れの応答を予測する。
5つのインジェクションウェルと5つのプロダクションウェルをランダムに配置し、各ウェルにランダム制御変数(ボトムホール圧力)を割り当てる、大規模なテストケースについて結果が提示される。
圧力および飽和の中間的相対誤差は300例で1-2%であった。
トレーニングされたGNSMが、新しい(地質学的に類似した)透水性実現の正確な予測を提供する能力を示す。
最後に、訓練されたGNSMは、微分進化アルゴリズムを用いて、井戸の位置と制御を最適化するために使用される。
GNSMベースの最適化結果はシミュレーションベースの最適化と同等であり、実行時のスピードアップは36。
この手法がロバストな最適化に使用される場合、複数の地質モデルで各候補解が評価される場合、はるかに大きなスピードアップが期待できる。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Benchmarking Optimizers for Qumode State Preparation with Variational Quantum Algorithms [10.941053143198092]
この分野の進歩と潜在的な応用により、クォーモックへの関心が高まっている。
本稿では,変分量子アルゴリズムを用いて状態準備に使用する各種パラメータのパフォーマンスベンチマークを提供することにより,このギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-05-07T17:15:58Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Sample-Efficient and Surrogate-Based Design Optimization of Underwater Vehicle Hulls [0.4543820534430522]
本稿では,BO-LCBアルゴリズムが最もサンプリング効率のよい最適化フレームワークであり,最適収束挙動を有することを示す。
また, DNN に基づく代理モデルでは, CFD シミュレーションと密に一致し, 平均絶対パーセンテージ誤差 (MAPE) が 1.85% であることを示す。
本稿では,サロゲートモデルを用いた設計最適化の2次高速化について述べる。
論文 参考訳(メタデータ) (2023-04-24T19:52:42Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
一般化されたデータ駆動進化アルゴリズム(GDDE)は、適切な配置と制御最適化問題で実行されるシミュレーションの数を減らすために提案される。
確率的ニューラルネットワーク(PNN)は、情報的および有望な候補を選択するための分類器として採用されている。
論文 参考訳(メタデータ) (2022-06-07T09:07:49Z) - Convolutional-Recurrent Neural Network Proxy for Robust Optimization and
Closed-Loop Reservoir Management [0.0]
畳み込みリカレントニューラルネットワーク(CNN-RNN)プロキシモデルを開発した。
この能力は、頑健な最適化に必要な目的関数と非線形制約値の推定を可能にする。
論文 参考訳(メタデータ) (2022-03-14T22:11:17Z) - A Graph Neural Network Framework for Grid-Based Simulation [0.9137554315375922]
本稿では,シミュレーションの実行を置き換え,最適化プロセスを高速化する代理フィードフォワードモデルを構築するためのグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々のGNNフレームワークは、石油やガス、炭素捕獲シークエンス(CCS)など、よく関連する地下最適化の応用に大きな可能性を示している。
論文 参考訳(メタデータ) (2022-02-05T22:48:16Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO最適化は、勾配推定、降下方向、ソリューション更新の3つの主要なステップを反復的に実行する。
我々は,ブラックボックス深層学習モデルによる説明文の評価や生成,効率的なオンラインセンサ管理など,ZO最適化の有望な応用を実証する。
論文 参考訳(メタデータ) (2020-06-11T06:50:35Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。