Offshore Wind Plant Instance Segmentation Using Sentinel-1 Time Series,
GIS, and Semantic Segmentation Models
- URL: http://arxiv.org/abs/2312.08773v1
- Date: Thu, 14 Dec 2023 09:49:15 GMT
- Title: Offshore Wind Plant Instance Segmentation Using Sentinel-1 Time Series,
GIS, and Semantic Segmentation Models
- Authors: Osmar Luiz Ferreira de Carvalho, Osmar Abilio de Carvalho Junior,
Anesmar Olino de Albuquerque, Daniel Guerreiro e Silva
- Abstract summary: This study aims to detect offshore wind plants at an instance level using semantic segmentation models and Sentinel-1 time series.
LinkNet was the top-performing model, followed by U-Net++ and U-Net, while FPN and DeepLabv3+ presented the worst results.
- Score: 0.3413711585591077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offshore wind farms represent a renewable energy source with a significant
global growth trend, and their monitoring is strategic for territorial and
environmental planning. This study's primary objective is to detect offshore
wind plants at an instance level using semantic segmentation models and
Sentinel-1 time series. The secondary objectives are: (a) to develop a database
consisting of labeled data and S-1 time series; (b) to compare the performance
of five deep semantic segmentation architectures (U-Net, U-Net++, Feature
Pyramid Network - FPN, DeepLabv3+, and LinkNet); (c) develop a novel
augmentation strategy that shuffles the positions of the images within the time
series; (d) investigate different dimensions of time series intervals (1, 5,
10, and 15 images); and (e) evaluate the semantic-to-instance conversion
procedure. LinkNet was the top-performing model, followed by U-Net++ and U-Net,
while FPN and DeepLabv3+ presented the worst results. The evaluation of
semantic segmentation models reveals enhanced Intersection over Union (IoU)
(25%) and F-score metrics (18%) with the augmentation of time series images.
The study showcases the augmentation strategy's capability to mitigate biases
and precisely detect invariant targets. Furthermore, the conversion from
semantic to instance segmentation demonstrates its efficacy in accurately
isolating individual instances within classified regions - simplifying training
data and reducing annotation effort and complexity.
Related papers
- GSTran: Joint Geometric and Semantic Coherence for Point Cloud Segmentation [33.72549134362884]
We propose GSTran, a novel transformer network tailored for the segmentation task.
The proposed network mainly consists of two principal components: a local geometric transformer and a global semantic transformer.
Experiments on ShapeNetPart and S3DIS benchmarks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-08-21T12:12:37Z) - Zero-Shot Refinement of Buildings' Segmentation Models using SAM [6.110856077714895]
We present a novel approach to adapt foundation models to address existing models' generalization dropback.
Among several models, our focus centers on the Segment Anything Model (SAM)
SAM does not offer recognition abilities and thus fails to classify and tag localized objects.
This novel approach augments SAM with recognition abilities, a first of its kind.
arXiv Detail & Related papers (2023-10-03T07:19:59Z) - Human Semantic Segmentation using Millimeter-Wave Radar Sparse Point
Clouds [3.3888257250564364]
This paper presents a framework for semantic segmentation on sparse sequential point clouds of millimeter-wave radar.
The sparsity and capturing temporal-topological features of mmWave data is still a problem.
We introduce graph structure and topological features to the point cloud and propose a semantic segmentation framework.
Our model achieves mean accuracy on a custom dataset by $mathbf82.31%$ and outperforms state-of-the-art algorithms.
arXiv Detail & Related papers (2023-04-27T12:28:06Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization.
We propose a new dataset, Navya 3D (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain.
It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds.
arXiv Detail & Related papers (2023-02-16T13:41:19Z) - OST: Efficient One-stream Network for 3D Single Object Tracking in Point Clouds [6.661881950861012]
We propose a novel one-stream network with the strength of the instance-level encoding, which avoids the correlation operations occurring in previous Siamese network.
The proposed method has achieved considerable performance not only for class-specific tracking but also for class-agnostic tracking with less computation and higher efficiency.
arXiv Detail & Related papers (2022-10-16T12:31:59Z) - GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation [91.15865862160088]
We introduce a geometric flow network (GFNet) to explore the geometric correspondence between different views in an align-before-fuse manner.
Specifically, we devise a novel geometric flow module (GFM) to bidirectionally align and propagate the complementary information across different views.
arXiv Detail & Related papers (2022-07-06T11:48:08Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
segmentation-based scene text detection methods have drawn extensive attention in the scene text detection field.
We propose a Differentiable Binarization (DB) module that integrates the binarization process into a segmentation network.
An efficient Adaptive Scale Fusion (ASF) module is proposed to improve the scale robustness by fusing features of different scales adaptively.
arXiv Detail & Related papers (2022-02-21T15:30:14Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
We present a framework for semi-adaptive and domain-supervised semantic segmentation.
It is enhanced by self-supervised monocular depth estimation trained only on unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset.
arXiv Detail & Related papers (2021-08-28T01:33:38Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.