I'M HOI: Inertia-aware Monocular Capture of 3D Human-Object Interactions
- URL: http://arxiv.org/abs/2312.08869v2
- Date: Sat, 30 Mar 2024 07:23:20 GMT
- Title: I'M HOI: Inertia-aware Monocular Capture of 3D Human-Object Interactions
- Authors: Chengfeng Zhao, Juze Zhang, Jiashen Du, Ziwei Shan, Junye Wang, Jingyi Yu, Jingya Wang, Lan Xu,
- Abstract summary: I'm-HOI is a monocular scheme to faithfully capture the 3D motions of both the human and object in a novel setting.
It combines general motion inference and category-aware refinement.
Our dataset and code will be released to the community.
- Score: 42.87514729260336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We are living in a world surrounded by diverse and "smart" devices with rich modalities of sensing ability. Conveniently capturing the interactions between us humans and these objects remains far-reaching. In this paper, we present I'm-HOI, a monocular scheme to faithfully capture the 3D motions of both the human and object in a novel setting: using a minimal amount of RGB camera and object-mounted Inertial Measurement Unit (IMU). It combines general motion inference and category-aware refinement. For the former, we introduce a holistic human-object tracking method to fuse the IMU signals and the RGB stream and progressively recover the human motions and subsequently the companion object motions. For the latter, we tailor a category-aware motion diffusion model, which is conditioned on both the raw IMU observations and the results from the previous stage under over-parameterization representation. It significantly refines the initial results and generates vivid body, hand, and object motions. Moreover, we contribute a large dataset with ground truth human and object motions, dense RGB inputs, and rich object-mounted IMU measurements. Extensive experiments demonstrate the effectiveness of I'm-HOI under a hybrid capture setting. Our dataset and code will be released to the community.
Related papers
- HOIMotion: Forecasting Human Motion During Human-Object Interactions Using Egocentric 3D Object Bounding Boxes [10.237077867790612]
We present HOIMotion, a novel approach for human motion forecasting during human-object interactions.
Our method integrates information about past body poses and egocentric 3D object bounding boxes.
We show that HOIMotion consistently outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2024-07-02T19:58:35Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
EgoGaussian is a method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone.
We show significant improvements in terms of both dynamic object and background reconstruction quality compared to the state-of-the-art.
arXiv Detail & Related papers (2024-06-28T10:39:36Z) - HOI-M3:Capture Multiple Humans and Objects Interaction within Contextual Environment [43.6454394625555]
HOI-M3 is a novel large-scale dataset for modeling the interactions of Multiple huMans and Multiple objects.
It provides accurate 3D tracking for both humans and objects from dense RGB and object-mounted IMU inputs.
arXiv Detail & Related papers (2024-03-30T09:24:25Z) - ParaHome: Parameterizing Everyday Home Activities Towards 3D Generative
Modeling of Human-Object Interactions [11.32229757116179]
We introduce the ParaHome system, designed to capture dynamic 3D movements of humans and objects within a common home environment.
By leveraging the ParaHome system, we collect a novel large-scale dataset of human-object interaction.
arXiv Detail & Related papers (2024-01-18T18:59:58Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - Full-Body Articulated Human-Object Interaction [61.01135739641217]
CHAIRS is a large-scale motion-captured f-AHOI dataset consisting of 16.2 hours of versatile interactions.
CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process.
By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation.
arXiv Detail & Related papers (2022-12-20T19:50:54Z) - Towards Multimodal Multitask Scene Understanding Models for Indoor
Mobile Agents [49.904531485843464]
In this paper, we discuss the main challenge: insufficient, or even no, labeled data for real-world indoor environments.
We describe MMISM (Multi-modality input Multi-task output Indoor Scene understanding Model) to tackle the above challenges.
MMISM considers RGB images as well as sparse Lidar points as inputs and 3D object detection, depth completion, human pose estimation, and semantic segmentation as output tasks.
We show that MMISM performs on par or even better than single-task models.
arXiv Detail & Related papers (2022-09-27T04:49:19Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
We propose a graph neural network, HO-GCN, to fuse motion data and dynamic descriptors for the prediction task.
We show the proposed network that consumes dynamic descriptors can achieve state-of-the-art prediction results and help the network better generalize to unseen objects.
arXiv Detail & Related papers (2022-06-25T09:55:39Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.