論文の概要: Read Between the Layers: Leveraging Intra-Layer Representations for
Rehearsal-Free Continual Learning with Pre-Trained Models
- arxiv url: http://arxiv.org/abs/2312.08888v1
- Date: Wed, 13 Dec 2023 13:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 22:27:37.271021
- Title: Read Between the Layers: Leveraging Intra-Layer Representations for
Rehearsal-Free Continual Learning with Pre-Trained Models
- Title(参考訳): 層間読み出し:事前学習モデルによるリハーサルなし連続学習のための階層内表現の活用
- Authors: Kyra Ahrens, Hans Hergen Lehmann, Jae Hee Lee, Stefan Wermter
- Abstract要約: 継続学習のための新しいクラスプロトタイプベースのアプローチであるLayUPを提案する。
提案手法は概念的には単純で,リプレイバッファを必要としない。
- 参考スコア(独自算出の注目度): 17.31203979844975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the Continual Learning (CL) problem, where a model has to learn a
sequence of tasks from non-stationary distributions while preserving prior
knowledge as it encounters new experiences. With the advancement of foundation
models, CL research has shifted focus from the initial learning-from-scratch
paradigm to the use of generic features from large-scale pre-training. However,
existing approaches to CL with pre-trained models only focus on separating the
class-specific features from the final representation layer and neglect the
power of intermediate representations that capture low- and mid-level features
naturally more invariant to domain shifts. In this work, we propose LayUP, a
new class-prototype-based approach to continual learning that leverages
second-order feature statistics from multiple intermediate layers of a
pre-trained network. Our method is conceptually simple, does not require any
replay buffer, and works out of the box with any foundation model. LayUP
improves over the state-of-the-art on four of the seven class-incremental
learning settings at a considerably reduced memory and computational footprint
compared with the next best baseline. Our results demonstrate that fully
exhausting the representational capacities of pre-trained models in CL goes far
beyond their final embeddings.
- Abstract(参考訳): 我々は、モデルが非定常分布から一連のタスクを学習し、新しい経験に遭遇する前の知識を保ちながら、継続学習(continual learning, cl)の問題に対処する。
基礎モデルの発展に伴い、cl研究は初期学習パラダイムから大規模事前学習から汎用機能の利用へと焦点を移している。
しかし、事前訓練されたモデルによるCLへの既存のアプローチは、クラス固有の特徴を最終表現層から分離することのみに集中し、ドメインシフトに自然に不変な低レベルと中レベルの特徴をキャプチャする中間表現のパワーを無視する。
本研究では,事前学習ネットワークの複数の中間層からの2次特徴統計量を活用する,クラスプロトタイプに基づく連続学習手法であるLayUPを提案する。
本手法は概念的に単純であり,リプレイバッファを必要としない。
LayUPは、次の最高のベースラインと比較して、メモリと計算のフットプリントが大幅に削減された7つのクラスインクリメンタル学習設定のうち4つの最新技術を改善している。
その結果、CLにおける事前学習モデルの表現能力を完全に消耗させることは、最終的な埋め込みをはるかに超えることを示した。
関連論文リスト
- Dual Consolidation for Pre-Trained Model-Based Domain-Incremental Learning [64.1745161657794]
ドメイン・インクリメンタル・ラーニング(ドメイン・インクリメンタル・ラーニング、ドメイン・インクリメンタル・ラーニング、ドメイン・インクリメンタル・ラーニング、ドメイン・インクリメンタル・ラーニング、Domain-Incremental Learning、DIL)は、異なるドメインにまたがる新しい概念へのモデルの漸進的な適応を含む。
プレトレーニングモデルの最近の進歩は、DILの確かな基盤を提供する。
しかし、新しい概念を学ぶことは、しばしば、事前訓練された知識を破滅的に忘れてしまう。
本稿では,歴史的知識の統一と統合を図るために,デュアルコンソリデータティオン(ドゥクト)を提案する。
論文 参考訳(メタデータ) (2024-10-01T17:58:06Z) - CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning [17.614980614656407]
インクリメンタル・プロンプト学習のための連続的生成学習を提案する。
変分オートエンコーダを用いてクラス条件分布を学習する。
このような生成的リプレイアプローチは、ゼロショット機能を改善しつつ、新しいタスクに適応できることを示す。
論文 参考訳(メタデータ) (2024-07-22T16:51:28Z) - Few Shot Class Incremental Learning using Vision-Language models [24.930246674021525]
本研究では,言語正規化器と部分空間正規化器を利用する,革新的な数ショットクラスインクリメンタルラーニング(FSCIL)フレームワークを提案する。
提案するフレームワークは,限られたデータを持つ新しいクラスをモデルに導入するだけでなく,ベースクラスのパフォーマンスの維持も保証する。
論文 参考訳(メタデータ) (2024-05-02T06:52:49Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - Guiding The Last Layer in Federated Learning with Pre-Trained Models [18.382057374270143]
フェデレートラーニング(FL)は、データを共有することなく、多数の参加者にまたがってモデルをトレーニングできる新興パラダイムである。
NCM(Nearest Class Means)を用いた分類ヘッドの適合は,既存の提案よりも正確に,桁違いに効率的に行えることを示す。
論文 参考訳(メタデータ) (2023-06-06T18:02:02Z) - Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery [76.63807209414789]
我々は,クラスiNCDにおける現状問題に挑戦し,クラス発見を継続的に,真に教師なしで行う学習パラダイムを提案する。
凍結したPTMバックボーンと学習可能な線形分類器から構成される単純なベースラインを提案する。
論文 参考訳(メタデータ) (2023-03-28T13:47:16Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Posterior Meta-Replay for Continual Learning [4.319932092720977]
連続学習(CL)アルゴリズムは最近、i.i.dでトレーニングする必要性を克服しようとするため、多くの注目を集めている。
未知のターゲットデータ分布からのサンプル。
ベイズ的視点を取り入れ,タスク固有の後方分布を継続的に学習することによって,cl問題に取り組むための原理的な方法を検討した。
論文 参考訳(メタデータ) (2021-03-01T17:08:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。