A Comparative Gas Cost Analysis of Proxy and Diamond Patterns in EVM Blockchains for Trusted Smart Contract Engineering
- URL: http://arxiv.org/abs/2312.08945v2
- Date: Wed, 15 May 2024 15:01:02 GMT
- Title: A Comparative Gas Cost Analysis of Proxy and Diamond Patterns in EVM Blockchains for Trusted Smart Contract Engineering
- Authors: Anto Benedetti, Tiphaine Henry, Sara Tucci-Piergiovanni,
- Abstract summary: This study aims to provide an in-depth analysis of gas costs associated with two prevalent upgradeable smart contract patterns: the Proxy and diamond patterns.
We conduct a comparative analysis of gas costs for both patterns in contrast to a traditional non-upgradeable smart contract.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blockchain applications are witnessing rapid evolution, necessitating the integration of upgradeable smart contracts. Software patterns have been proposed to summarize upgradeable smart contract best practices. However, research is missing on the comparison of these upgradeable smart contract patterns, especially regarding gas costs related to deployment and execution. This study aims to provide an in-depth analysis of gas costs associated with two prevalent upgradeable smart contract patterns: the Proxy and diamond patterns. The Proxy pattern utilizes a Proxy pointing to a logic contract, while the diamond pattern enables a Proxy to point to multiple logic contracts. We conduct a comparative analysis of gas costs for both patterns in contrast to a traditional non-upgradeable smart contract. We derive from this analysis a theoretical contribution in the form of two consolidated blockchain patterns and a corresponding decision model. By so doing we hope to contribute to the broader understanding of upgradeable smart contract patterns.
Related papers
- Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - Soley: Identification and Automated Detection of Logic Vulnerabilities in Ethereum Smart Contracts Using Large Language Models [1.081463830315253]
We empirically investigate logic vulnerabilities in real-world smart contracts extracted from code changes on GitHub.
We introduce Soley, an automated method for detecting logic vulnerabilities in smart contracts.
We examine mitigation strategies employed by smart contract developers to address these vulnerabilities in real-world scenarios.
arXiv Detail & Related papers (2024-06-24T00:15:18Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - HyMo: Vulnerability Detection in Smart Contracts using a Novel
Multi-Modal Hybrid Model [1.16095700765361]
Existing analysis techniques are capable of identifying a large number of smart contract security flaws, but they rely too much on rigid criteria established by specialists.
We propose HyMo as a multi-modal hybrid deep learning model, which intelligently considers various input representations to consider multimodality.
We show that our hybrid HyMo model has excellent smart contract vulnerability detection performance.
arXiv Detail & Related papers (2023-04-25T19:16:21Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - Detecting Logical Relation In Contract Clauses [94.85352502638081]
We develop an approach to automate the extraction of logical relations between clauses in a contract.
The resulting approach should help contract authors detecting potential logical conflicts between clauses.
arXiv Detail & Related papers (2021-11-02T19:26:32Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - A Bytecode-based Approach for Smart Contract Classification [10.483992071557195]
The number of smart contracts deployed on blockchain platforms is growing exponentially, which makes it difficult for users to find desired services by manual screening.
Current research on smart contract classification focuses on Natural Language Processing (NLP) solutions which are based on contract source code.
This paper proposes a classification model based on features from contract bytecode instead of source code to solve these problems.
arXiv Detail & Related papers (2021-05-31T03:00:29Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z) - Profiling Gas Consumption in Solidity Smart Contracts [3.0378875015087567]
We propose GasMet, a suite of metrics for statically evaluating the code quality of a smart contract from the gas consumption perspective.
An experiment involving 2,186 smart contracts demonstrates that the proposed metrics have direct associations with deployment costs.
arXiv Detail & Related papers (2020-08-12T17:26:55Z) - Blockchain Enabled Smart Contract Based Applications: Deficiencies with
the Software Development Life Cycle Models [0.0]
The immutability of the blocks, where the smart contracts are stored, causes conflicts with the traditional Software Development Life Cycle (SDLC) models.
This research article addresses this current problem by first exploring the six traditional SDLC models.
It advocates that there is an urgent need to develop new standard model(s) to address the arising issues.
arXiv Detail & Related papers (2020-01-21T03:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.