Strongly Coupled Spins of Silicon-Vacancy Centers Inside a Nanodiamond
with Sub-Megahertz Linewidth
- URL: http://arxiv.org/abs/2312.08967v2
- Date: Tue, 23 Jan 2024 14:50:37 GMT
- Title: Strongly Coupled Spins of Silicon-Vacancy Centers Inside a Nanodiamond
with Sub-Megahertz Linewidth
- Authors: Marco Klotz, Richard Waltrich, Niklas Lettner, Viatcheslav Agafonov,
Alexander Kubanek
- Abstract summary: electron spin of a color center in diamond mediates interaction between a long-lived nuclear spin and a photon.
We demonstrate strong coupling of its electron spin, while the electron spin's decoherence rate remained below 1 MHz.
We furthermore demonstrate multi-spin coupling with the potential to establish registers of quantum memories in nanodiamonds.
- Score: 43.06643088952006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The search for long-lived quantum memories, which can be efficiently
interfaced with flying qubits is longstanding. One possible solution is to use
the electron spin of a color center in diamond to mediate interaction between a
long-lived nuclear spin and a photon. Realizing this in a nanodiamond
furthermore facilitates the integration into photonic devices and enables the
realization of hybrid quantum systems with access to quantum memories. Here, we
investigated the spin environment of negatively-charged Silicon-Vacancy centers
in a nanodiamond and demonstrate strong coupling of its electron spin, while
the electron spin's decoherence rate remained below 1 MHz. We furthermore
demonstrate multi-spin coupling with the potential to establish registers of
quantum memories in nanodiamonds.
Related papers
- Spin-photon entanglement with direct photon emission in the telecom
C-band [0.0]
Solid-state quantum emitters in the telecom C-band are a promising platform for quantum communication applications.
We report the first demonstration of spin-photon entanglement in a solid-state system capable of direct emission into the telecom C-band.
arXiv Detail & Related papers (2023-10-25T18:53:42Z) - Erbium emitters in commercially fabricated nanophotonic silicon
waveguides [0.0]
We show that erbium dopants can be reliably integrated into commercially fabricated low-loss waveguides.
Our findings are an important step towards long-lived quantum memories that can be fabricated on a wafer-scale.
arXiv Detail & Related papers (2023-07-26T07:58:05Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Preparing highly entangled states of nanodiamond rotation and NV center
spin [0.913755431537592]
A nanodiamond with an embedded nitrogen-vacancy (NV) center is one of the experimental systems that can be coherently manipulated within current technologies.
Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a network connecting these microscopic and mesoscopic motions.
arXiv Detail & Related papers (2023-05-13T21:17:14Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Strong coupling between a photon and a hole spin in silicon [0.0]
Coupling spins strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity.
We demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible MOS fabrication process.
arXiv Detail & Related papers (2022-06-28T15:26:35Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.