Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register
- URL: http://arxiv.org/abs/2104.12619v2
- Date: Wed, 13 Oct 2021 10:24:13 GMT
- Title: Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register
- Authors: Cathryn P. Michaels, Jes\'us Arjona Mart\'inez, Romain Debroux, Ryan
A. Parker, Alexander M. Stramma, Luca I. Huber, Carola M. Purser, Mete
Atat\"ure, Dorian A. Gangloff
- Abstract summary: Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
- Score: 48.7576911714538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photonic cluster states are a powerful resource for measurement-based quantum
computing and loss-tolerant quantum communication. Proposals to generate
multi-dimensional lattice cluster states have identified coupled spin-photon
interfaces, spin-ancilla systems, and optical feedback mechanisms as potential
schemes. Following these, we propose the generation of multi-dimensional
lattice cluster states using a single, efficient spin-photon interface coupled
strongly to a nuclear register. Our scheme makes use of the contact hyperfine
interaction to enable universal quantum gates between the interface spin and a
local nuclear register and funnels the resulting entanglement to photons via
the spin-photon interface. Among several quantum emitters, we identify the
silicon-29 vacancy centre in diamond, coupled to a nanophotonic structure, as
possessing the right combination of optical quality and spin coherence for this
scheme. We show numerically that using this system a 2x5-sized cluster state
with a lower-bound fidelity of 0.5 and repetition rate of 65 kHz is achievable
under currently realised experimental performances and with feasible technical
overhead. Realistic gate improvements put 100-photon cluster states within
experimental reach.
Related papers
- A scalable cavity-based spin-photon interface in a photonic integrated
circuit [0.15178488157371034]
We show integration of nanophotonic cavities containing tin-vacancy (SnV) centers in a photonic integrated circuit (PIC)
We find with near-term improvements this multiplexed architecture can enable high-fidelity quantum state transfer.
arXiv Detail & Related papers (2024-02-28T05:26:32Z) - All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics [33.607979748917465]
Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces.
We demonstrate all-optical readout of the electronic spin of a negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity.
Our results mark an important step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center's electron spin in nanodiamonds with potential use for quantum networks, quantum communication and distributed quantum computation.
arXiv Detail & Related papers (2023-08-29T18:03:11Z) - Mapping a 50-spin-qubit network through correlated sensing [0.0]
We map a network of 50 coupled spins using a single nitrogen-vacancy center in diamond.
Results provide new opportunities for quantum simulations by increasing the number of available spin qubits.
Our methods might find applications in nano-scale imaging of complex spin systems external to the host crystal.
arXiv Detail & Related papers (2023-07-13T17:56:45Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ideal refocusing of an optically active spin qubit under strong
hyperfine interactions [0.48730499243678804]
We show that eliminating strain inhomogeneity using lattice-matched GaAs-AlGaAs quantum dot devices prolongs the electron spin coherence by nearly two orders of magnitude.
Our findings constitute the basis for highly coherent spin-photon interfaces.
arXiv Detail & Related papers (2022-06-02T18:00:26Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Spin-controlled generation of indistinguishable and distinguishable
photons from silicon vacancy centres in silicon carbide [1.3428816436609148]
Quantum systems combining indistinguishable photon generation and spin-based quantum information processing are essential for remote quantum applications and networking.
Here, we demonstrate controlled emission of indistinguishable and distinguishable photons via coherent spin manipulation.
We exploit the system's intimate spin-photon relation to spin-control the colour and indistinguishability of consecutively emitted photons.
arXiv Detail & Related papers (2020-01-08T11:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.