論文の概要: Weighted Ensemble Models Are Strong Continual Learners
- arxiv url: http://arxiv.org/abs/2312.08977v3
- Date: Sun, 28 Jul 2024 14:09:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 00:26:37.281083
- Title: Weighted Ensemble Models Are Strong Continual Learners
- Title(参考訳): 重み付きアンサンブルモデルは強力な継続的な学習者である
- Authors: Imad Eddine Marouf, Subhankar Roy, Enzo Tartaglione, Stéphane Lathuilière,
- Abstract要約: 本研究では,タスク列のモデル学習を目標とする連続学習(CL)の問題について検討する。
CLは基本的に、新しいタスクで学べることと、以前に学んだ概念でのパフォーマンスを維持することのバランスをとる行為である。
安定性と塑性のトレードオフに対処するため,従来の課題と現在の課題のモデルパラメータを重み付けする手法を提案する。
- 参考スコア(独自算出の注目度): 20.62749699589017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we study the problem of continual learning (CL) where the goal is to learn a model on a sequence of tasks, such that the data from the previous tasks becomes unavailable while learning on the current task data. CL is essentially a balancing act between being able to learn on the new task (i.e., plasticity) and maintaining the performance on the previously learned concepts (i.e., stability). Intending to address the stability-plasticity trade-off, we propose to perform weight-ensembling of the model parameters of the previous and current tasks. This weighted-ensembled model, which we call Continual Model Averaging (or CoMA), attains high accuracy on the current task by leveraging plasticity, while not deviating too far from the previous weight configuration, ensuring stability. We also propose an improved variant of CoMA, named Continual Fisher-weighted Model Averaging (or CoFiMA), that selectively weighs each parameter in the weights ensemble by leveraging the Fisher information of the weights of the model. Both variants are conceptually simple, easy to implement, and effective in attaining state-of-the-art performance on several standard CL benchmarks. Code is available at: https://github.com/IemProg/CoFiMA.
- Abstract(参考訳): 本研究では,タスクのシーケンス上でモデルを学習することを目的とした連続学習(CL)の問題について検討する。
CLは基本的に、新しいタスク(可塑性)で学習できることと、以前に学んだ概念(安定性)のパフォーマンスを維持することのバランスをとる行為である。
安定性と塑性のトレードオフに対処するため,従来の課題と現在の課題のモデルパラメータを重み付けする手法を提案する。
連続モデル平均化(Continual Model Averaging, CoMA)と呼ばれるこの重み付きアンサンブルモデルでは, 可塑性を利用して, 従来の重み設定から過度に逸脱せず, 安定性を確保しながら, 現在の作業において高い精度を達成している。
また、モデル重みのフィッシャー情報を活用することにより、重みアンサンブル内の各パラメータを選択的に重み付けする改良型CoMA(Continuous Fisher-weighted Model Averaging, CoFiMA)を提案する。
どちらの変種も概念的には単純で実装が容易で、いくつかの標準CLベンチマークで最先端のパフォーマンスを達成するのに効果的である。
コードは、https://github.com/IemProg/CoFiMA.comで入手できる。
関連論文リスト
- LLaCA: Multimodal Large Language Continual Assistant [59.585544987096974]
MCIT(Multimodal Continual Instruction Tuning)は、MLLMにシーケンシャルデータセットにおける人間の意図に従うよう継続的に指示するために用いられる。
既存の勾配更新は、以前のデータセットのチューニング性能を著しく損なうことになる。
本稿では,この課題に対処するため,LLaCA (Multimodal Large Language Continual Assistant) という手法を提案する。
論文 参考訳(メタデータ) (2024-10-08T11:24:59Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
そこで本研究では,繰り返しのトレーニングにおいて安定な機械学習モデルのシーケンスを見つける手法を提案する。
最適モデルの復元が保証される混合整数最適化の定式化を開発する。
本手法は, 予測力の小さい, 制御可能な犠牲を伴い, 厳密に訓練されたモデルよりも強い安定性を示す。
論文 参考訳(メタデータ) (2024-03-28T22:45:38Z) - Towards Plastic and Stable Exemplar-Free Incremental Learning: A Dual-Learner Framework with Cumulative Parameter Averaging [12.168402195820649]
In this proposed a Dual-Learner framework with Cumulative。
平均化(DLCPA)
DLCPA は Task-IL と Class-IL の両方の設定において,最先端の既定ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-28T08:48:44Z) - Model Merging by Uncertainty-Based Gradient Matching [70.54580972266096]
ミスマッチを減らすことで性能を改善するための不確実性に基づく新しいスキームを提案する。
我々の新しい手法は、大きな言語モデルと視覚変換器に一貫した改善をもたらす。
論文 参考訳(メタデータ) (2023-10-19T15:02:45Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - New metrics for analyzing continual learners [27.868967961503962]
継続学習(CL)は、標準的な学習アルゴリズムに課題をもたらす。
この安定性・塑性ジレンマはCLの中心であり、安定性と塑性を個別に適切に測定するために複数の測定基準が提案されている。
課題の難しさを考慮に入れた新しい指標を提案する。
論文 参考訳(メタデータ) (2023-09-01T13:53:33Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
本稿では,継続学習モデル(CL)が事前学習者に与える影響を幅広く研究する。
その結果, 微調整性能が著しく低下することなく, 表現の伝達品質が徐々に向上することがわかった。
本稿では,下流タスクの解法において,リッチなタスクジェネリック表現を保存できる新しい微調整方式GLobal Attention Discretization(GLAD)を提案する。
論文 参考訳(メタデータ) (2023-06-21T05:26:28Z) - Model Stability with Continuous Data Updates [2.439909645714735]
機械学習(ML)モデルの「安定性」を,大規模で複雑なNLPシステムのコンテキスト内で研究する。
ネットワークアーキテクチャや入力表現を含むモデル設計の選択は、安定性に重大な影響を与える。
モデリングの選択を行う際に、MLモデルデザイナが正確さとジッタのトレードオフを考慮に入れることを推奨する。
論文 参考訳(メタデータ) (2022-01-14T22:11:16Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。