論文の概要: Conformalised data synthesis
- arxiv url: http://arxiv.org/abs/2312.08999v2
- Date: Fri, 10 Jan 2025 17:04:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:25:30.033741
- Title: Conformalised data synthesis
- Title(参考訳): コンフォーマル化データ合成
- Authors: Julia A. Meister, Khuong An Nguyen,
- Abstract要約: コンフォーマル予測フレームワークに基づく高信頼特徴空間領域からデータを生成する合成アルゴリズムを提案する。
ユビキタスな現実世界の課題に対する我々のアプローチの汎用性を示すため、データセットは様々な困難な特徴に対して慎重に選択された。
すべての試験において、自信ある合成データによって拡張されたトレーニングセットは、少なくとも元のセットと同様に実行され、最大61パーセントのF1スコアでDeep Learningのパフォーマンスが大幅に向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the proliferation of increasingly complicated Deep Learning architectures, data synthesis is a highly promising technique to address the demand of data-hungry models. However, reliably assessing the quality of a 'synthesiser' model's output is an open research question with significant associated risks for high-stake domains. To address this challenge, we propose a unique synthesis algorithm that generates data from high-confidence feature space regions based on the Conformal Prediction framework. We support our proposed algorithm with a comprehensive exploration of the core parameter's influence, an in-depth discussion of practical advice, and an extensive empirical evaluation of five benchmark datasets. To show our approach's versatility on ubiquitous real-world challenges, the datasets were carefully selected for their variety of difficult characteristics: low sample count, class imbalance, and non-separability. In all trials, training sets extended with our confident synthesised data performed at least as well as the original set and frequently significantly improved Deep Learning performance by up to 61 percentage points F1-score.
- Abstract(参考訳): ますます複雑なディープラーニングアーキテクチャの普及に伴い、データ合成はデータハングリーモデルの需要に対処するための非常に有望な技術である。
しかし、「合成器」モデルの出力の質を確実に評価することは、高リスク領域に対する重大なリスクを伴うオープンな研究課題である。
この課題に対処するために,コンフォーマル予測フレームワークに基づく高信頼機能領域からデータを生成するユニークな合成アルゴリズムを提案する。
提案アルゴリズムは,コアパラメータの影響の包括的探索,実践的アドバイスの詳細な議論,および5つのベンチマークデータセットの広範な実験的評価によって支援される。
ユビキタスな実世界の課題に対する我々のアプローチの汎用性を示すために、データセットは、サンプル数、クラス不均衡、非分離性といった、さまざまな難しい特徴に対して慎重に選択された。
すべての試験において、自信ある合成データによって拡張されたトレーニングセットは、少なくとも元のセットと同様に実行され、最大61パーセントのF1スコアでDeep Learningのパフォーマンスが大幅に向上した。
関連論文リスト
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
本稿では, 複雑度の異なる3つの生成モデルを用いて, 悪意ネットワークトラフィックを合成する手法を提案する。
提案手法は,数値データをテキストに変換し,言語モデリングタスクとして再フレーミングする。
提案手法は,高忠実度合成データの生成において,最先端の生成モデルを超えている。
論文 参考訳(メタデータ) (2024-11-04T09:51:10Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
データ分析は、詳細な研究と決定的な洞察を生み出すための重要な分析プロセスである。
LLMのコード生成機能を活用した高品質な応答アノテーションの自動生成を提案する。
我々のDACO-RLアルゴリズムは、57.72%のケースにおいて、SFTモデルよりも有用な回答を生成するために、人間のアノテータによって評価される。
論文 参考訳(メタデータ) (2024-03-04T22:47:58Z) - Synthetic Information towards Maximum Posterior Ratio for deep learning
on Imbalanced Data [1.7495515703051119]
マイノリティクラスのための合成データを生成することによって,データのバランスをとる手法を提案する。
提案手法は,高エントロピーサンプルを同定することにより,情報領域のバランスを優先する。
実験結果から,提案手法の優れた性能を実証した。
論文 参考訳(メタデータ) (2024-01-05T01:08:26Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
そこで本研究では,高品質な自然主義的合成隠蔽顔を製造するための2つの手法を提案する。
両手法の有効性とロバスト性を実証的に示す。
我々は,RealOccとRealOcc-Wildという,微細なアノテーションを付加した高精細な実世界の顔データセットを2つ提示する。
論文 参考訳(メタデータ) (2022-05-12T17:03:57Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Holdout-Based Fidelity and Privacy Assessment of Mixed-Type Synthetic
Data [0.0]
aiベースのデータ合成はここ数年で急速に進歩しており、プライバシを尊重するデータ共有を可能にするという約束がますます認識されている。
我々は,合成データソリューションの信頼性とプライバシリスクを定量化するための,ホールドアウトに基づく実証的評価フレームワークを紹介し,実証する。
論文 参考訳(メタデータ) (2021-04-01T17:30:23Z) - Foundations of Bayesian Learning from Synthetic Data [1.6249267147413522]
我々はベイズパラダイムを用いて、合成データから学習する際のモデルパラメータの更新を特徴付ける。
ベイジアン・アップデートの最近の成果は、決定理論に基づく新しい、堅牢な合成学習のアプローチを支持している。
論文 参考訳(メタデータ) (2020-11-16T21:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。