論文の概要: A Framework for Exploring Federated Community Detection
- arxiv url: http://arxiv.org/abs/2312.09023v1
- Date: Thu, 14 Dec 2023 15:13:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-15 21:25:23.313036
- Title: A Framework for Exploring Federated Community Detection
- Title(参考訳): 連合コミュニティ検出のための枠組み
- Authors: William Leeney and Ryan McConville
- Abstract要約: フェデレーション・ラーニング(Federated Learning)は、データの常駐性やプライバシの制約を維持しながら、クライアントのネットワークにおける機械学習である。
コミュニティ検出は、グラフ構造化データ内のノードのクラスタの教師なし発見である。
私たちは、分散データによって導入されたパフォーマンスのギャップを示す、既存のデータセットをまたいだ初期実験を行います。
- 参考スコア(独自算出の注目度): 4.358468367889626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning is machine learning in the context of a network of clients
whilst maintaining data residency and/or privacy constraints. Community
detection is the unsupervised discovery of clusters of nodes within
graph-structured data. The intersection of these two fields uncovers much
opportunity, but also challenge. For example, it adds complexity due to missing
connectivity information between privately held graphs. In this work, we
explore the potential of federated community detection by conducting initial
experiments across a range of existing datasets that showcase the gap in
performance introduced by the distributed data. We demonstrate that isolated
models would benefit from collaboration establishing a framework for
investigating challenges within this domain. The intricacies of these research
frontiers are discussed alongside proposed solutions to these issues.
- Abstract(参考訳): フェデレーション学習(federated learning)は、データのレジデンシやプライバシの制約を維持しながら、クライアントネットワークのコンテキストにおけるマシンラーニングである。
コミュニティ検出は、グラフ構造化データ内のノードのクラスタの教師なし発見である。
この2つの分野の交わりは、多くの機会を露呈するが、挑戦でもある。
例えば、プライベートに保持されたグラフ間の接続情報が欠如しているため、複雑さが増す。
本研究では,分散データによってもたらされるパフォーマンスのギャップを示す,既存のデータセットをまたいだ初期実験を行うことで,連合コミュニティ検出の可能性を検討する。
分離されたモデルは、このドメイン内の課題を調査するためのフレームワークを確立することのメリットを実証します。
これらの研究フロンティアの複雑さは、これらの問題に対する提案された解決策と共に議論される。
関連論文リスト
- A Survey on Group Fairness in Federated Learning: Challenges, Taxonomy of Solutions and Directions for Future Research [5.08731160761218]
機械学習におけるグループフェアネスは、異なるグループ間で平等な結果を達成することに焦点を当てた研究の重要領域である。
フェデレーション学習は、クライアント間の不均一なデータ分散による公平性の必要性を増幅する。
連合学習におけるグループフェアネスの総合的な調査は行われていない。
データパーティショニング、ロケーション、適用戦略といった重要な基準に基づいて、これらのアプローチの新しい分類法を作成します。
論文 参考訳(メタデータ) (2024-10-04T18:39:28Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
本研究では,Large Language Models (LLMs) を用いてデータの洞察の発見を自動化する可能性について検討する。
そこで本稿では,データセット内の意味的かつ関連する情報(フラグ)を識別する能力を測定するために,フラグを捕捉する原理に基づく新しい評価手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T14:20:06Z) - Over-Squashing in Graph Neural Networks: A Comprehensive survey [0.0]
この調査は、グラフニューラルネットワーク(GNN)におけるオーバースカッシングの課題を掘り下げるものだ。
オーバースカッシングの原因、結果、緩和戦略を包括的に探求する。
グラフの書き換え、新しい正規化、スペクトル分析、曲率に基づく戦略など、様々な手法がレビューされている。
また、オーバー・スムーシングなど、オーバー・スカッシングと他のGNN制限との相互作用についても論じている。
論文 参考訳(メタデータ) (2023-08-29T18:46:15Z) - Collaborative Mean Estimation over Intermittently Connected Networks
with Peer-To-Peer Privacy [86.61829236732744]
本研究は、断続接続を有するネットワーク上での分散平均推定(DME)の問題について考察する。
目標は、中央サーバの助けを借りて、分散ノード間でローカライズされたデータサンプルに関するグローバル統計を学習することだ。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2023-02-28T19:17:03Z) - META-CODE: Community Detection via Exploratory Learning in Topologically
Unknown Networks [5.299515147443958]
META-CODEは、未知のトポロジを持つネットワーク内の重複するコミュニティを検出するエンドツーエンドのソリューションである。
1)ネットワークの初期推定,2)グラフニューラルネットワーク(GNN)に基づくノードレベルのコミュニティアフィリエイト埋め込み,3)コミュニティアフィリエイトベースのノードクエリによるネットワーク探索,の3つのステップで構成されている。
論文 参考訳(メタデータ) (2022-08-23T15:02:48Z) - Building Inspection Toolkit: Unified Evaluation and Strong Baselines for
Damage Recognition [0.0]
損傷認識の分野において、関連するオープンソースデータセットを含むデータハブを簡易に使用するためのビルディングインスペクションツールキット -- bikit -- を紹介します。
データセットには評価分割と事前定義されたメトリクスが組み込まれており、特定のタスクとそのデータ分布に適合する。
この領域の研究者のモチベーションを高めるために、私たちはリーダーボードとモデルの重みをコミュニティと共有する可能性も提供します。
論文 参考訳(メタデータ) (2022-02-14T20:05:59Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - A Survey of Community Detection Approaches: From Statistical Modeling to
Deep Learning [95.27249880156256]
ネットワークコミュニティファイリング手法の統一アーキテクチャを開発し,提案する。
既存の手法を確率的グラフィカルモデルとディープラーニングという2つのカテゴリに分けた新しい分類法を提案する。
フィールドの課題の議論と今後の研究の方向性の提案を締めくくります。
論文 参考訳(メタデータ) (2021-01-03T02:32:45Z) - Joint Inference of Diffusion and Structure in Partially Observed Social
Networks Using Coupled Matrix Factorization [3.399624105745357]
本稿では、部分的に観測されたデータからモデルを学び、観測されていない拡散と構造ネットワークを推定する。
提案手法では,ノードとカスケードプロセスの相互関係を,学習因子と低次元潜在因子を用いて利用した。
これらの合成および実世界のデータセットの実験により、提案手法は見えない社会行動を検出し、リンクを予測し、潜伏した特徴を識別することに成功した。
論文 参考訳(メタデータ) (2020-10-03T17:48:57Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
論文 参考訳(メタデータ) (2020-05-17T11:22:11Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。