論文の概要: ReCoRe: Regularized Contrastive Representation Learning of World Model
- arxiv url: http://arxiv.org/abs/2312.09056v2
- Date: Wed, 3 Apr 2024 13:09:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 22:37:19.223664
- Title: ReCoRe: Regularized Contrastive Representation Learning of World Model
- Title(参考訳): ReCoRe: 世界モデルの正規化コントラスト表現学習
- Authors: Rudra P. K. Poudel, Harit Pandya, Stephan Liwicki, Roberto Cipolla,
- Abstract要約: 対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
- 参考スコア(独自算出の注目度): 21.29132219042405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While recent model-free Reinforcement Learning (RL) methods have demonstrated human-level effectiveness in gaming environments, their success in everyday tasks like visual navigation has been limited, particularly under significant appearance variations. This limitation arises from (i) poor sample efficiency and (ii) over-fitting to training scenarios. To address these challenges, we present a world model that learns invariant features using (i) contrastive unsupervised learning and (ii) an intervention-invariant regularizer. Learning an explicit representation of the world dynamics i.e. a world model, improves sample efficiency while contrastive learning implicitly enforces learning of invariant features, which improves generalization. However, the na\"ive integration of contrastive loss to world models is not good enough, as world-model-based RL methods independently optimize representation learning and agent policy. To overcome this issue, we propose an intervention-invariant regularizer in the form of an auxiliary task such as depth prediction, image denoising, image segmentation, etc., that explicitly enforces invariance to style interventions. Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark. With only visual observations, we further demonstrate that our approach outperforms recent language-guided foundation models for point navigation, which is essential for deployment on robots with limited computation capabilities. Finally, we demonstrate that our proposed model excels at the sim-to-real transfer of its perception module on the Gibson benchmark.
- Abstract(参考訳): 近年のモデルフリー強化学習(RL)手法はゲーム環境における人間レベルの有効性を示したが、視覚ナビゲーションのような日常的なタスクにおける成功は制限されており、特に顕著な外観変化が見られた。
この制限は
(i)サンプル効率が悪くて
(ii) トレーニングシナリオに過度に適合する。
これらの課題に対処するために、不変特徴を学習する世界モデルを提案する。
一 対照的に教師なしの学習及び
(ii)介入不変正則化器。
世界モデルの明示的な表現、すなわち世界モデルの学習は、サンプル効率を改善し、対照的な学習は暗黙的に不変の特徴の学習を強制し、一般化を改善する。
しかし、世界モデルに基づくRL手法は、表現学習とエージェントポリシーを独立して最適化するので、世界モデルに対する「対比的損失」の統合は不十分である。
この問題を克服するため、我々は、スタイルの介入を明示的に強制する、深度予測、画像認識、画像分割などの補助的なタスクの形で、介入不変な正規化器を提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
視覚的な観察だけで、我々のアプローチは、限られた計算能力を持つロボットへの展開に欠かせない、ポイントナビゲーションのための最近の言語誘導基盤モデルよりも優れていることを示す。
最後に,提案モデルがギブソンベンチマーク上での認識モジュールのsim-to-real転送において優れていることを示す。
関連論文リスト
- Learning from Random Demonstrations: Offline Reinforcement Learning with Importance-Sampled Diffusion Models [19.05224410249602]
閉ループポリシー評価と世界モデル適応を用いたオフライン強化学習のための新しい手法を提案する。
提案手法の性能を解析し,提案手法と実環境とのリターンギャップに上限を設けた。
論文 参考訳(メタデータ) (2024-05-30T09:34:31Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Contrastive Unsupervised Learning of World Model with Invariant Causal
Features [20.116319631571095]
共分散原理を用いて因果的特徴を学習する世界モデルを提案する。
対照的な教師なし学習を用いて、不変因果関係の特徴を学習する。
提案モデルは最先端のモデルと同等に動作する。
論文 参考訳(メタデータ) (2022-09-29T16:49:24Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
ベイズ的非パラメトリック法を適用し,力学系制御の学習に挑戦する。
ガウス過程を用いて潜在世界力学を探索することにより、強化学習で観測される一般的なデータ効率の問題を緩和する。
本アルゴリズムは,ログの変動的下界を最適化することにより,世界モデルと政策を共同で学習する。
論文 参考訳(メタデータ) (2021-10-27T04:27:28Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
グラフ構造化サーロゲートモデル (GSSM) と呼ばれるモデルが, 環境ダイナミクス予測における最先端の手法を上回っていることを示した。
当社のアプローチでは,テスト時間ポリシの勾配最適化を回避して,デプロイメント中の高速実行を実現しつつ,高いリターンを得ることができる。
論文 参考訳(メタデータ) (2021-02-16T17:21:55Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。