Image Demoireing in RAW and sRGB Domains
- URL: http://arxiv.org/abs/2312.09063v2
- Date: Fri, 15 Mar 2024 07:55:25 GMT
- Title: Image Demoireing in RAW and sRGB Domains
- Authors: Shuning Xu, Binbin Song, Xiangyu Chen, Xina Liu, Jiantao Zhou,
- Abstract summary: We develop Skip-Connection-based Demoireing Module (SCDM) with Gated Feedback Module (GFM) and Frequency Selection Module (FSM)
We design a RGB Guided ISP (RGISP) to learn a device-dependent ISP, assisting the process of color recovery.
Our RRID outperforms state-of-the-art approaches, in terms of the performance in moire pattern removal and color cast correction by 0.62dB in PSNR and 0.003 in SSIM.
- Score: 18.921026683632146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Moire patterns frequently appear when capturing screens with smartphones or cameras, potentially compromising image quality. Previous studies suggest that moire pattern elimination in the RAW domain offers greater effectiveness compared to demoireing in the sRGB domain. Nevertheless, relying solely on RAW data for image demoireing is insufficient in mitigating the color cast due to the absence of essential information required for the color correction by the image signal processor (ISP). In this paper, we propose to jointly utilize both RAW and sRGB data for image demoireing (RRID), which are readily accessible in modern smartphones and DSLR cameras. We develop Skip-Connection-based Demoireing Module (SCDM) with Gated Feedback Module (GFM) and Frequency Selection Module (FSM) embedded in skip-connections for the efficient and effective demoireing of RAW and sRGB features, respectively. Subsequently, we design a RGB Guided ISP (RGISP) to learn a device-dependent ISP, assisting the process of color recovery. Extensive experiments demonstrate that our RRID outperforms state-of-the-art approaches, in terms of the performance in moire pattern removal and color cast correction by 0.62dB in PSNR and 0.003 in SSIM.
Related papers
- A Learnable Color Correction Matrix for RAW Reconstruction [19.394856071610604]
We introduce a learnable color correction matrix (CCM) to approximate the complex inverse image signal processor (ISP)
Experimental results demonstrate that simulated RAW (simRAW) images generated by our method provide performance improvements equivalent to those produced by more complex inverse ISP methods.
arXiv Detail & Related papers (2024-09-04T07:46:42Z) - BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
We tackle blind image super-resolution in the RAW domain.
We design a realistic degradation pipeline tailored specifically for training models with raw sensor data.
Our BSRAW models trained with our pipeline can upscale real-scene RAW images and improve their quality.
arXiv Detail & Related papers (2023-12-24T14:17:28Z) - Self-Supervised Reversed Image Signal Processing via Reference-Guided
Dynamic Parameter Selection [1.1602089225841632]
We propose a self-supervised reversed ISP method that does not require metadata and paired images.
The proposed method converts a RGB image into a RAW-like image taken in the same environment with the same sensor as a reference RAW image.
We show that the proposed method is able to learn various reversed ISPs with comparable accuracy to other state-of-the-art supervised methods.
arXiv Detail & Related papers (2023-03-24T11:12:05Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
This paper introduces the AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstruction.
We aim to recover raw sensor images from the corresponding RGBs without metadata and, by doing this, "reverse" the ISP transformation.
arXiv Detail & Related papers (2022-10-20T10:43:53Z) - Learning sRGB-to-Raw-RGB De-rendering with Content-Aware Metadata [46.28281823015191]
We show how to improve the de-rendering results by jointly learning sampling and reconstruction.
Our experiments show that our learned sampling can adapt to the image content to produce better raw reconstructions than existing methods.
arXiv Detail & Related papers (2022-06-03T20:43:17Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
We propose a trainable Image Signal Processing framework that produces DSLR quality images given RAW images captured by a smartphone.
To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image.
arXiv Detail & Related papers (2022-03-20T20:13:59Z) - Model-Based Image Signal Processors via Learnable Dictionaries [6.766416093990318]
Digital cameras transform sensor RAW readings into RGB images by means of their Image Signal Processor (ISP)
Recent approaches have attempted to bridge this gap by estimating the RGB to RAW mapping.
We present a novel hybrid model-based and data-driven ISP that is both learnable and interpretable.
arXiv Detail & Related papers (2022-01-10T08:36:10Z) - Towards Low Light Enhancement with RAW Images [101.35754364753409]
We make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement.
We develop a new evaluation framework, Factorized Enhancement Model (FEM), which decomposes the properties of RAW images into measurable factors.
A RAW-guiding Exposure Enhancement Network (REENet) is developed, which makes trade-offs between the advantages and inaccessibility of RAW images in real applications.
arXiv Detail & Related papers (2021-12-28T07:27:51Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
This paper presents a joint learning model for image alignment and RAW-to-sRGB mapping.
Experiments show that our method performs favorably against state-of-the-arts on ZRR and SR-RAW datasets.
arXiv Detail & Related papers (2021-08-18T12:41:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.