CMOSE: Comprehensive Multi-Modality Online Student Engagement Dataset with High-Quality Labels
- URL: http://arxiv.org/abs/2312.09066v2
- Date: Tue, 4 Jun 2024 01:27:35 GMT
- Title: CMOSE: Comprehensive Multi-Modality Online Student Engagement Dataset with High-Quality Labels
- Authors: Chi-hsuan Wu, Shih-yang Liu, Xijie Huang, Xingbo Wang, Rong Zhang, Luca Minciullo, Wong Kai Yiu, Kenny Kwan, Kwang-Ting Cheng,
- Abstract summary: We present the CMOSE dataset, which contains a large number of data from different engagement levels and high-quality labels annotated according to psychological advice.
We also propose a training mechanism MocoRank to handle the intra-class variety and the ordinal pattern of different degrees of engagement classes.
- Score: 26.537675109294234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online learning is a rapidly growing industry. However, a major doubt about online learning is whether students are as engaged as they are in face-to-face classes. An engagement recognition system can notify the instructors about the students condition and improve the learning experience. Current challenges in engagement detection involve poor label quality, extreme data imbalance, and intra-class variety - the variety of behaviors at a certain engagement level. To address these problems, we present the CMOSE dataset, which contains a large number of data from different engagement levels and high-quality labels annotated according to psychological advice. We also propose a training mechanism MocoRank to handle the intra-class variety and the ordinal pattern of different degrees of engagement classes. MocoRank outperforms prior engagement detection frameworks, achieving a 1.32% increase in overall accuracy and 5.05% improvement in average accuracy. Further, we demonstrate the effectiveness of multi-modality in engagement detection by combining video features with speech and audio features. The data transferability experiments also state that the proposed CMOSE dataset provides superior label quality and behavior diversity.
Related papers
- BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
We introduce a novel framework, Balancing Active Learning (BAL), which constructs adaptive sub-pools to balance diverse and uncertain data.
Our approach outperforms all established active learning methods on widely recognized benchmarks by 1.20%.
arXiv Detail & Related papers (2023-12-26T08:14:46Z) - DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction [10.775623936099173]
Previous semi-supervised learning methods typically match model predictions of different data-augmented views in a single-level interaction manner.
We propose a novel SSL method called DualMatch, in which the class prediction jointly invokes feature embedding in a dual-level interaction manner.
In the standard SSL setting, the proposal achieves 9% error reduction compared with SOTA methods, even in a more challenging class-imbalanced setting, the proposal can still achieve 6% error reduction.
arXiv Detail & Related papers (2023-10-25T08:34:05Z) - JointMatch: A Unified Approach for Diverse and Collaborative
Pseudo-Labeling to Semi-Supervised Text Classification [65.268245109828]
Semi-supervised text classification (SSTC) has gained increasing attention due to its ability to leverage unlabeled data.
Existing approaches based on pseudo-labeling suffer from the issues of pseudo-label bias and error accumulation.
We propose JointMatch, a holistic approach for SSTC that addresses these challenges by unifying ideas from recent semi-supervised learning.
arXiv Detail & Related papers (2023-10-23T05:43:35Z) - Leveraging Demonstrations to Improve Online Learning: Quality Matters [54.98983862640944]
We show that the degree of improvement must depend on the quality of the demonstration data.
We propose an informed TS algorithm that utilizes the demonstration data in a coherent way through Bayes' rule.
arXiv Detail & Related papers (2023-02-07T08:49:12Z) - Detecting Disengagement in Virtual Learning as an Anomaly [4.706263507340607]
Student engagement is an important factor in meeting the goals of virtual learning programs.
In this paper, we formulate detecting disengagement in virtual learning as an anomaly detection problem.
We design various autoencoders, including temporal convolutional network autoencoder, long-short-term memory autoencoder.
arXiv Detail & Related papers (2022-11-13T10:29:25Z) - Looking For A Match: Self-supervised Clustering For Automatic Doubt
Matching In e-learning Platforms [1.0705399532413613]
We develop a label-agnostic doubt matching paradigm based on the representations learnt via self-supervised technique.
We propose custom BYOL which combines domain-specific augmentation with contrastive objective over a varied set of appropriately constructed data views.
arXiv Detail & Related papers (2022-08-20T04:12:19Z) - Online Continual Learning via Multiple Deep Metric Learning and
Uncertainty-guided Episodic Memory Replay -- 3rd Place Solution for ICCV 2021
Workshop SSLAD Track 3A Continual Object Classification [41.35216156491142]
Non-stationarity in online continual learning potentially brings about catastrophic forgetting in neural networks.
Our proposed method achieves considerable generalization with average mean class accuracy (AMCA) 64.01% on validation and 64.53% AMCA on test set.
arXiv Detail & Related papers (2021-11-04T11:16:42Z) - LANA: Towards Personalized Deep Knowledge Tracing Through
Distinguishable Interactive Sequences [21.67751919579854]
We propose Leveled Attentive KNowledge TrAcing (LANA) to predict students' responses to future questions.
It uses a novel student-related features extractor (SRFE) to distill students' unique inherent properties from their respective interactive sequences.
With pivot module reconstructed the decoder for individual students and leveled learning specialized encoders for groups, personalized DKT was achieved.
arXiv Detail & Related papers (2021-04-21T02:57:42Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
We study the multi-class classification setting where the labels are considered sensitive and ought to be protected.
We propose a new algorithm for training deep neural networks with label differential privacy, and run evaluations on several datasets.
arXiv Detail & Related papers (2021-02-11T15:09:06Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - CoMatch: Semi-supervised Learning with Contrastive Graph Regularization [86.84486065798735]
CoMatch is a new semi-supervised learning method that unifies dominant approaches.
It achieves state-of-the-art performance on multiple datasets.
arXiv Detail & Related papers (2020-11-23T02:54:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.