Towards Verifiable Text Generation with Evolving Memory and Self-Reflection
- URL: http://arxiv.org/abs/2312.09075v3
- Date: Fri, 18 Oct 2024 09:02:46 GMT
- Title: Towards Verifiable Text Generation with Evolving Memory and Self-Reflection
- Authors: Hao Sun, Hengyi Cai, Bo Wang, Yingyan Hou, Xiaochi Wei, Shuaiqiang Wang, Yan Zhang, Dawei Yin,
- Abstract summary: Verifiable text generation prompts large language models to generate content with citations for accuracy verification.
However, verifiable text generation is non-trivial due to the focus-shifting phenomenon, the intricate reasoning needed to align the claim with correct citations, and the dilemma between the precision and breadth of retrieved documents.
We present VTG, an innovative framework for Verifiable Text Generation with evolving memory and self-reflection.
- Score: 29.453251483492803
- License:
- Abstract: Despite the remarkable ability of large language models (LLMs) in language comprehension and generation, they often suffer from producing factually incorrect information, also known as hallucination. A promising solution to this issue is verifiable text generation, which prompts LLMs to generate content with citations for accuracy verification. However, verifiable text generation is non-trivial due to the focus-shifting phenomenon, the intricate reasoning needed to align the claim with correct citations, and the dilemma between the precision and breadth of retrieved documents. In this paper, we present VTG, an innovative framework for Verifiable Text Generation with evolving memory and self-reflection. VTG introduces evolving long short-term memory to retain both valuable documents and recent documents. A two-tier verifier equipped with an evidence finder is proposed to rethink and reflect on the relationship between the claim and citations. Furthermore, active retrieval and diverse query generation are utilized to enhance both the precision and breadth of the retrieved documents. We conduct extensive experiments on five datasets across three knowledge-intensive tasks and the results reveal that VTG significantly outperforms baselines.
Related papers
- Cognitive-Aligned Document Selection for Retrieval-augmented Generation [2.9060210098040855]
We propose GGatrieval to dynamically update queries and filter high-quality, reliable retrieval documents.
We parse the user query into its syntactic components and perform fine-grained grounded alignment with the retrieved documents.
Our approach introduces a novel criterion for filtering retrieved documents, closely emulating human strategies for acquiring targeted information.
arXiv Detail & Related papers (2025-02-17T13:00:15Z) - Improving Factuality with Explicit Working Memory [68.39261790277615]
Large language models can generate factually inaccurate content, a problem known as hallucination.
We introduce EWE (Explicit Working Memory), a novel approach that enhances factuality in long-form text generation by integrating a working memory that receives real-time feedback from external resources.
arXiv Detail & Related papers (2024-12-24T00:55:59Z) - CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks [20.390672895839757]
Retrieval-augmented generation (RAG) has emerged as a popular solution to enhance factual accuracy.
Traditional retrieval modules often rely on large document index and disconnect with generative tasks.
We propose textbfCorpusLM, a unified language model that integrates generative retrieval, closed-book generation, and RAG.
arXiv Detail & Related papers (2024-02-02T06:44:22Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Knowledge-Augmented Language Model Verification [68.6099592486075]
Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters.
We propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier.
Our results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs.
arXiv Detail & Related papers (2023-10-19T15:40:00Z) - Optimizing Factual Accuracy in Text Generation through Dynamic Knowledge
Selection [71.20871905457174]
Language models (LMs) have revolutionized the way we interact with information, but they often generate nonfactual text.
Previous methods use external knowledge as references for text generation to enhance factuality but often struggle with the knowledge mix-up of irrelevant references.
We present DKGen, which divide the text generation process into an iterative process.
arXiv Detail & Related papers (2023-08-30T02:22:40Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.