Class-Wise Buffer Management for Incremental Object Detection: An
Effective Buffer Training Strategy
- URL: http://arxiv.org/abs/2312.09139v1
- Date: Thu, 14 Dec 2023 17:10:09 GMT
- Title: Class-Wise Buffer Management for Incremental Object Detection: An
Effective Buffer Training Strategy
- Authors: Junsu Kim, Sumin Hong, Chanwoo Kim, Jihyeon Kim, Yihalem Yimolal
Tiruneh, Jeongwan On, Jihyun Song, Sunhwa Choi, Seungryul Baek
- Abstract summary: Class incremental learning aims to solve a problem that arises when continuously adding unseen class instances to an existing model.
We introduce an effective buffer training strategy (eBTS) that creates the optimized replay buffer on object detection.
- Score: 11.109975137910881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class incremental learning aims to solve a problem that arises when
continuously adding unseen class instances to an existing model This approach
has been extensively studied in the context of image classification; however
its applicability to object detection is not well established yet. Existing
frameworks using replay methods mainly collect replay data without considering
the model being trained and tend to rely on randomness or the number of labels
of each sample. Also, despite the effectiveness of the replay, it was not yet
optimized for the object detection task. In this paper, we introduce an
effective buffer training strategy (eBTS) that creates the optimized replay
buffer on object detection. Our approach incorporates guarantee minimum and
hierarchical sampling to establish the buffer customized to the trained model.
%These methods can facilitate effective retrieval of prior knowledge.
Furthermore, we use the circular experience replay training to optimally
utilize the accumulated buffer data. Experiments on the MS COCO dataset
demonstrate that our eBTS achieves state-of-the-art performance compared to the
existing replay schemes.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Watch Your Step: Optimal Retrieval for Continual Learning at Scale [1.7265013728931]
In continual learning, a model learns incrementally over time while minimizing interference between old and new tasks.
One of the most widely used approaches in continual learning is referred to as replay.
We propose a framework for evaluating selective retrieval strategies, categorized by simple, independent class- and sample-selective primitives.
We propose a set of strategies to prevent duplicate replays and explore whether new samples with low loss values can be learned without replay.
arXiv Detail & Related papers (2024-04-16T17:35:35Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)
MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.
Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - DST-Det: Simple Dynamic Self-Training for Open-Vocabulary Object Detection [72.25697820290502]
This work introduces a straightforward and efficient strategy to identify potential novel classes through zero-shot classification.
We refer to this approach as the self-training strategy, which enhances recall and accuracy for novel classes without requiring extra annotations, datasets, and re-training.
Empirical evaluations on three datasets, including LVIS, V3Det, and COCO, demonstrate significant improvements over the baseline performance.
arXiv Detail & Related papers (2023-10-02T17:52:24Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot object detection (FSOD) methods have emerged as a solution to the limitations of classic object detection approaches.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during the FSOD training stage.
Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception of the object detection model for large objects.
arXiv Detail & Related papers (2023-08-15T02:35:59Z) - Continual Learning with Strong Experience Replay [32.154995019080594]
We propose a CL method with Strong Experience Replay (SER)
SER utilizes future experiences mimicked on the current training data, besides distilling past experience from the memory buffer.
Experimental results on multiple image classification datasets show that our SER method surpasses the state-of-the-art methods by a noticeable margin.
arXiv Detail & Related papers (2023-05-23T02:42:54Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
Region sampling or weighting is significantly important to the success of modern region-based object detectors.
We argue that sample weighting should be data-dependent and task-dependent.
We propose a unified sample weighting network to predict a sample's task weights.
arXiv Detail & Related papers (2020-06-11T16:19:16Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.