Watch Your Step: Optimal Retrieval for Continual Learning at Scale
- URL: http://arxiv.org/abs/2404.10758v2
- Date: Thu, 9 May 2024 21:03:58 GMT
- Title: Watch Your Step: Optimal Retrieval for Continual Learning at Scale
- Authors: Truman Hickok, Dhireesha Kudithipudi,
- Abstract summary: In continual learning, a model learns incrementally over time while minimizing interference between old and new tasks.
One of the most widely used approaches in continual learning is referred to as replay.
We propose a framework for evaluating selective retrieval strategies, categorized by simple, independent class- and sample-selective primitives.
We propose a set of strategies to prevent duplicate replays and explore whether new samples with low loss values can be learned without replay.
- Score: 1.7265013728931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In continual learning, a model learns incrementally over time while minimizing interference between old and new tasks. One of the most widely used approaches in continual learning is referred to as replay. Replay methods support interleaved learning by storing past experiences in a replay buffer. Although there are methods for selectively constructing the buffer and reprocessing its contents, there is limited exploration of the problem of selectively retrieving samples from the buffer. Current solutions have been tested in limited settings and, more importantly, in isolation. Existing work has also not explored the impact of duplicate replays on performance. In this work, we propose a framework for evaluating selective retrieval strategies, categorized by simple, independent class- and sample-selective primitives. We evaluated several combinations of existing strategies for selective retrieval and present their performances. Furthermore, we propose a set of strategies to prevent duplicate replays and explore whether new samples with low loss values can be learned without replay. In an effort to match our problem setting to a realistic continual learning pipeline, we restrict our experiments to a setting involving a large, pre-trained, open vocabulary object detection model, which is fully fine-tuned on a sequence of 15 datasets.
Related papers
- Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Class-Wise Buffer Management for Incremental Object Detection: An
Effective Buffer Training Strategy [11.109975137910881]
Class incremental learning aims to solve a problem that arises when continuously adding unseen class instances to an existing model.
We introduce an effective buffer training strategy (eBTS) that creates the optimized replay buffer on object detection.
arXiv Detail & Related papers (2023-12-14T17:10:09Z) - Primal Dual Continual Learning: Balancing Stability and Plasticity through Adaptive Memory Allocation [86.8475564814154]
We show that it is both possible and beneficial to undertake the constrained optimization problem directly.
We focus on memory-based methods, where a small subset of samples from previous tasks can be stored in a replay buffer.
We show that dual variables indicate the sensitivity of the optimal value of the continual learning problem with respect to constraint perturbations.
arXiv Detail & Related papers (2023-09-29T21:23:27Z) - OER: Offline Experience Replay for Continual Offline Reinforcement Learning [25.985985377992034]
Continuously learning new skills via a sequence of pre-collected offline datasets is desired for an agent.
In this paper, we formulate a new setting, continual offline reinforcement learning (CORL), where an agent learns a sequence of offline reinforcement learning tasks.
We propose a new model-based experience selection scheme to build the replay buffer, where a transition model is learned to approximate the state distribution.
arXiv Detail & Related papers (2023-05-23T08:16:44Z) - BatchFormer: Learning to Explore Sample Relationships for Robust
Representation Learning [93.38239238988719]
We propose to enable deep neural networks with the ability to learn the sample relationships from each mini-batch.
BatchFormer is applied into the batch dimension of each mini-batch to implicitly explore sample relationships during training.
We perform extensive experiments on over ten datasets and the proposed method achieves significant improvements on different data scarcity applications.
arXiv Detail & Related papers (2022-03-03T05:31:33Z) - vCLIMB: A Novel Video Class Incremental Learning Benchmark [53.90485760679411]
We introduce vCLIMB, a novel video continual learning benchmark.
vCLIMB is a standardized test-bed to analyze catastrophic forgetting of deep models in video continual learning.
We propose a temporal consistency regularization that can be applied on top of memory-based continual learning methods.
arXiv Detail & Related papers (2022-01-23T22:14:17Z) - An Investigation of Replay-based Approaches for Continual Learning [79.0660895390689]
Continual learning (CL) is a major challenge of machine learning (ML) and describes the ability to learn several tasks sequentially without catastrophic forgetting (CF)
Several solution classes have been proposed, of which so-called replay-based approaches seem very promising due to their simplicity and robustness.
We empirically investigate replay-based approaches of continual learning and assess their potential for applications.
arXiv Detail & Related papers (2021-08-15T15:05:02Z) - Distilled Replay: Overcoming Forgetting through Synthetic Samples [11.240947363668242]
Replay strategies are Continual Learning techniques which mitigate catastrophic forgetting by keeping a buffer of patterns from previous experience.
This work introduces Distilled Replay, a novel replay strategy for Continual Learning which is able to mitigate forgetting by keeping a very small buffer.
We show the effectiveness of our Distilled Replay against naive replay, which randomly samples patterns from the dataset, on four popular Continual Learning benchmarks.
arXiv Detail & Related papers (2021-03-29T18:02:05Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.